HEIKO SERVICE MANUAL

Wall Mounted Type
T-Series
Model No. JZ050-C1

WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or Repair the product or products dealt with in this service information by anyone else could result in serious injury or death

Version: V1 Date: 2020-02-19

Contents

1.Introduction	1
2.Specifications	7
3.Sensors list	8
4.Pinping diagrams	9
5.Operation range	10
6.Printed Circuit Board Connector Wiring Diagram	11
7.Outdoor Functions and Control	14
8.Dimensional drawings	28
10.Service Diagnosis	29
11.Performance and cerves diagrams	45
12.Sound level	53
13. Circuit diagrams	54

1.Introduction

1.1 Safety Cautions

Be sure to read the following safety cautions before conducting repair work.

The caution items are classified into "Warning" and "Caution". The "Warning" items are especially important since they can lead to death or serious injury if they are not followed closely. The "Caution" items can also lead

to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety

caution items described below.

About the pictograms

 \triangle This symbol indicates an item for which caution must be exercised.

The pictogram shows the item to which attention must be paid.

o This symbol indicates a prohibited action.

The prohibited item or action is shown inside or near the symbol.

• This symbol indicates an action that must be taken, or an instruction.

The instruction is shown inside or near the symbol.

After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates Normally, and explain the cautions for operating the product to the customer.

1.2.1 Caution in Repair

Warning	
Be sure to disconnect the power cable plug from the plug socket before disassembling the equipment for	
a repair.	
Working on the equipment that is connected to a power supply can cause an electrical shook.	
If it is necessary to supply power to the equipment to conduct the repair or inspecting the circuits, do not	
touch any electrically charged sections of the equipment.	
If the refrigerant gas discharges during the repair work, do not touch the discharging refrigerant gas .The refrigerant gas can cause frostbite.	\bigcirc
When disconnecting the suction or discharge pipe of the compressor at the welded section, release the	
refrigerant gas completely at a well-ventilated place first.	
If there is a gas remaining inside the compressor , the refrigerant gas or cooling machine oil discharges	
when the pipe is disconnected, and it can cause injury.	
If the refrigerant gas leaks during the repair work, ventilate the area. The refrigerant gas can generate toxic gases when it contacts flames.	0
The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit.	A
Be sure to discharge the capacitor completely before conducting repair work . A charged capacitor can	
cause an electrical shock.	
Do not start or stop the air conditioner operation by plugging or unplugging the power cable plug.	
Plugging or unplugging the power cable plug to operate the equipment can cause an electrical shock or	()
fire.	

Warning	
Do not repair the electrical components with wet hands . Working on the equipment with wet hands can cause an electrical shock	0
Do not clean the air conditioner by splashing water. Washing the unit with water can cause an electrical shock.	\bigcirc
Be sure to provide the grounding when repairing the equipment in a humid or wet place, to avoid electrical shock.	
Be sure to turn off the power switch and unplug the power cable when cleaning the equipment. The internal fan rotates at a high speed, and cause injury.	
Do not tilt the unit when removing it. The water inside the unit can spill and wet the furniture and floor.	\bigcirc
Be sure to check that the cooling cycle section has cooled down sufficiently before conducting repair work. Working on the unit when the cooling cycle section is hot can cause burns.	
Use the welder in a well-ventilated place. Using the welder in an enclosed room can cause oxygen deficiency.	0

1.2.2 Cautions Regarding Products after Repair

Warning	
Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to	
conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools can	
cause an electrical shock, excessive heat generation or fire.	
When relocating the equipment, make sure that the new installation site has sufficient strength to	
withstand the weight of the equipment.	
If the installation site does not have sufficient strength and if the installation work is not conducted	
securely, the equipment can fall and cause injury.	
Be sure to install the product correctly by using the provided standard installation frame.	For
Incorrect use of the installation frame and improper installation can cause the equipment to fall, resulting	integral
in injury.	units only
Do ours to install the product ecourally in the installation frame mounted on a window frame	For
Be sure to install the product securely in the installation frame mounted on a window frame.	integral
If the unit is not securely mounted, it can fall and cause injury.	units only

Warning	
Be sure to use an exclusive power circuit for the equipment, and follow the technical standards related to the electrical equipment, the internal wiring regulations and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work can cause an electrical shock or fire.	
Be sure to use the specified cable to connect between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections can cause excessive heat generation or fire.	
When connecting the cable between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable. If the cover is not mounted properly, the terminal connection section can cause an electrical shock, excessive heat generation or fire. Do not damage or modify the power cable. Damaged or modified power cable can cause an electrical shock or fire. Placing heavy items on the power cable, and heating or pulling the power cable can damage the cable.	\bigcirc
Do not mix air or gas other than the specified refrigerant (R-410A / R22) in the refrigerant system. If air enters the cooling system, an excessively high pressure results, causing equipment damage and injury.	
If the refrigerant gas leaks, be sure to locate the leak and repair it before charging the refrigerant. After charging refrigerant, make sure that there is no refrigerant leak. If the leak cannot be located and the repair work must be stopped, be sure to perform pump-down and close the service valve, to prevent the refrigerant gas from leaking into the room. The refrigerant gas itself is harmless, but it can generate toxic gases when it contacts flames, such as fan and other heaters, stoves and ranges.	•
When replacing the coin battery in the remote controller, be sure to disposed of the old battery to prevent children from swallowing it. If a child swallows the coin battery, see a doctor immediately.	

Caution	
Installation of a leakage breaker is necessary in some cases depending on the conditions o installation site, to prevent electrical shocks.	of the
Do not install the equipment in a place where there is a possibility of combustible gas leaks. If a combustible gas leaks and remains around the unit, it can cause a fire.	
Be sure to install the packing and seal on the installation frame properly. If the packing and installed properly, water can enter the room and wet the furniture and floor.	seal are not

1.2.3 Inspection after Repair

Warning	
Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet all the way. If the plug has dust or loose connection, it can cause an electrical shock or fire.	0
If the power cable and lead wires have scratches or deteriorated, be sure to replace them. Damaged cable and wires can cause an electrical shock, excessive heat generation or fire.	0

Warning Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances since it can cause an electrical shock, excessive heat generation or fire.

Caution	
Check to see if the parts and wires are mounted and connected properly, and if the connections at the	
soldered or crimped terminals are secure. Improper installation and connections can cause excessive	
heat generation, fire or an electrical shock.	
If the installation platform or frame has corroded, replace it. Corroded installation platform or frame can	
cause the unit to fall, resulting in injury.	
Check the grounding, and repair it if the equipment is not properly grounded. Improper grounding can cause an electrical shock.	4
Be sure to measure the insulation resistance after the repair, and make sure that the resistance is 1 M	
ohm or higher.	
Faulty insulation can cause an electrical shock.	
Be sure to check the drainage of the indoor unit after the repair.	
Faulty drainage can cause the water to enter the room and wet the furniture and floor.	

1.2.4 Using Icons

Icons are used to attract the attention of the reader to specific information. The meaning of each icon is described in the table below:

1.2.5 Using Icons List

Icon	Type of Information	Description	
Note	Note	A "note" provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.	
1 Caution	Caution	A "caution" is used when there is danger that the reader, through incorrect manipulation, may damage equipment, loose data, get an unexpected result or has to restart (part of) a procedure.	
A Warning	Warning	A "warning" is used when there is danger of personal injury.	
L	Reference	A "reference" guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.	

2.Specifications

NOMINAL DISTRIBUTION SYSTEM VOLTAGE			
Phase	1	1	
Frequency	Hz	50	
Voltage	V	230	

NOMINAL CAPACITY and NOMINAL INPUT				
		Cooling	heating	
Capacity rated	kW	5	5.2	
	Btu/h	17060	17740	
Power Consumption(Rated)	kW	1.46	1.40	
SEER/SCOP	W/W	6.1/A++	4.0/A+	
Annual energy consumption	kWh	287	1610	
Moisture Removal	m³/h	2.0*10 - 3	2.0*10 - 3	

TECHNICAL SPECIFICATIONS-UNIT			
Dimensions	H*W*D	mm	800×280×550
Packaged	H*W*D		054,400,402
Dimensions	H W D	mm	954×409×625
Weight	1	ĶG	32.7
Gross weight	1	KG	36.5
Coundless	Sound peessure	dB	53
Sound level	Sound power	dB	65

ELECTRICAL SPECIFICATIONS				
	Cooling	heating		
Nominal running current A		6.5	6.3	
Maximum running current A		8.9	11.3	
Starting current	Α	1	1	

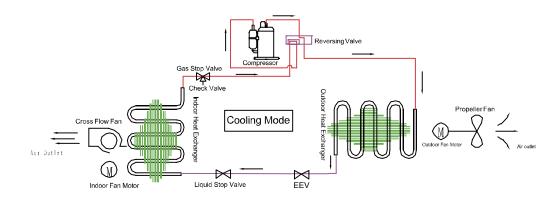
TECHNICAL SPECIFICATIONS-PARTS					
			cooling	heating	
	Туре	Туре		Rotary Compressor	
	Model		0010725980		
Compressor	Motor output	W	695		
	Oil type		FW50S/RM-LP56EG or equivalent		
	Oil charge volume	L	0.32		
	Туре		Axial fan		
Fan	Motor output	W	40		
rali	Air flow rate(high)	m³/h	2500		
	Speed(high/low)	rpm	950/300		
Heat	Туре		ML fin-φ7HI-HX tub	e	

Specification

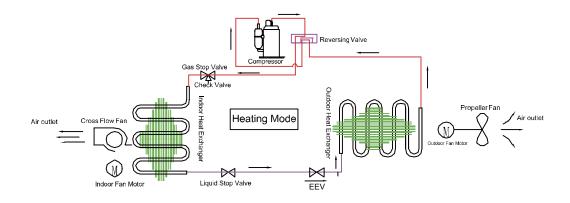
exchanger	Row*stage*fitch		2*26*1.4			
TECHNICAL SP	TECHNICAL SPECIFICATIONS-OTHERS					
	Refrigerant type			R32		
	Refrigerant charge		KG	0.90		
Refrigerant	Maximum allowable d	istance	NA.	25		
circuit			M	25		
	Maximum allowable level difference		m	15		
	Refrigerant control		Capillary Tube			
Dining connecti	Piping connections (external diameter)		mm	Ф6.35		
			mm	Ф12.7		
(external diame			mm	Ф16		
Heat insulation ty	/ре		Both liquid and Gas pipes			
Max. piping Length		m.	25			
Max. Level Difference		m	15			
Chargeless		m	7			
Amount of Additional Charge of Refrigerant		g/m	20			

Note: the data are based on the conditions shown in the table below

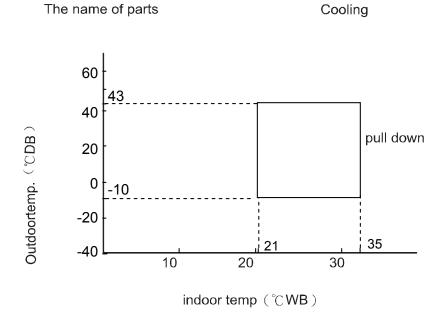
cooling	heating	Piping length	
Indoor: 27℃DB/19℃WB	Indoor:20°CDB	5m	
Outdoor: 35℃DB/24℃WB	Outdoor: 7℃DB/6℃WB	5m	

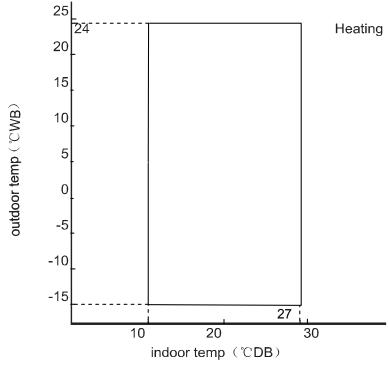

Conversation formulae
Kcal/h= kW×860
Btu/h= kW×3414
cfm=m³/min×35.3

3.Sensors list


type	Description	Qty
Ambient sensor	Its used for detecting temperature of outdoor side	
Defrosting sensor	Its used for controlling outdoor defrosting at heating mode	1
Discharging sensor	Its used for compressor in case of over-heat	
Suction sensor	Its used for detecting suction pipe temperature of compressor to adjust gas flowing	1

4. Pinping diagrams


Cooling mode



Heating mode

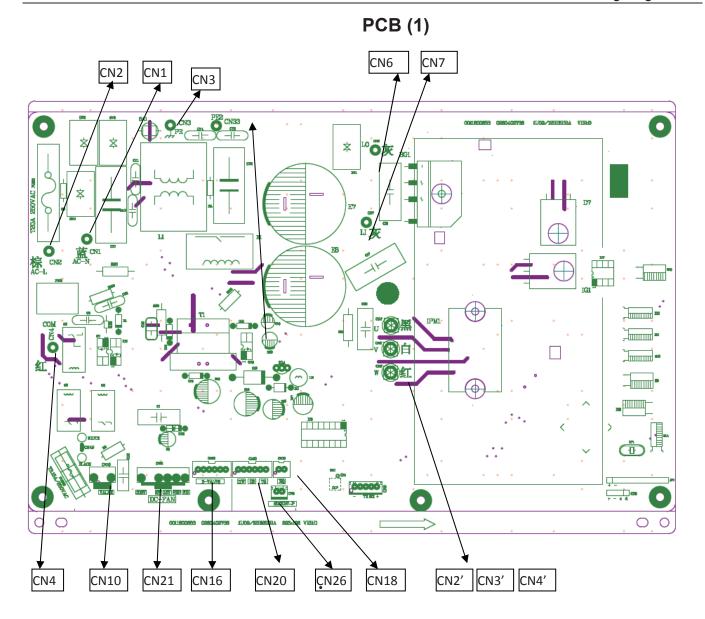
5. Operation range

Notes:

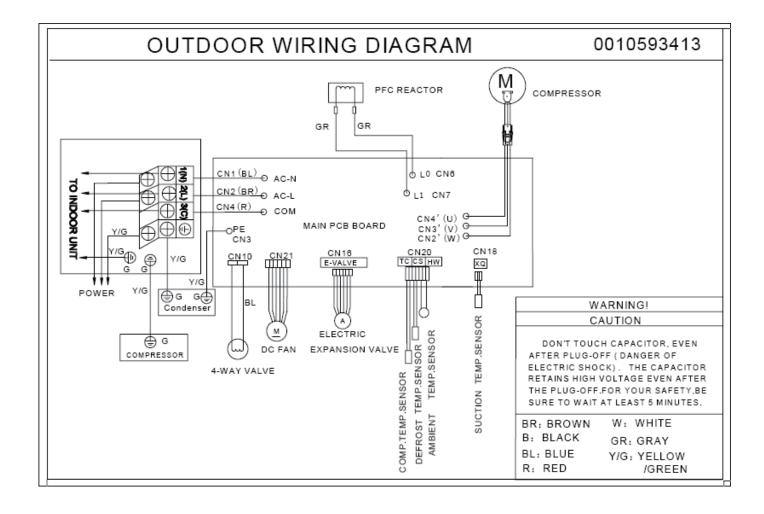
The graphs are based on the following condition:

Equivalent piping length 5m
Level difference 0m
Air flow rate high

6.Printed Circuit Board Connector Wiring Diagram


Connectors

PCB (1) (Outdoor Control PCB)


CN1	Connector for power N and L	
CN2		
CN3	Connector for ground	
CN2'		
CN3'	Connector for the U, V, W wire of the compressor	
CN4'		
LI (CN7)	Connector for reactor	
LO (CN6)		
CN21	Connector for fan motor	
CN10	Connector for four way valve coil	
CN20	Connector for Temperature sensor	
CN18		
CN5	Connector for Terminal Socket-protection	
CN4	Connector for communicate between indoor and outdoor unit	
CN16	Connector for electric expansion valves	
	CN2 CN3 CN2' CN3' CN4' LI (CN7) LO (CN6) CN21 CN10 CN20 CN18 CN5 CN4	

Note: Other Designations

- 1) FUSE 1, (20A, 250VAC); FUSE 2(3.15A, 250VAC)
- 2) LED 1 Keep light representative normal, if keep flash interval representative trouble Alarm
- 3) RV1, RV2, RV3, RV4 Varistor

Wiring diagrams

7. Outdoor Functions and Control

7.1 Main functions and control specification

7.1.1 The operation frequency of outdoor unit and its control

7.1.1.1 The operation frequency control of compressor

The operation frequency scope of compressor:

Mode	Minimum operation frequency	Maximum operation frequency
Heating	25Hz	85Hz
Refrigeration	25Hz	100Hz

7.1.1.2 The starting of compressor

When the compressor is started for the first time, it must be kept under the conditions of 38Hz,58Hz,88Hz for 30second,one minute, one minute (the overheating protection of the outdoor unit air-blowing temperature, immediately decrease the frequency when the compressor is overflowing and releasing the pressure), then it can be operated towards the target frequency. When the machine runs normally, there's no such process. After starting the compressor for operation, the compressor should run according to the calculated frequency, and every determined frequency for protection should be prior to the calculated frequency.

7.1.1.3 The speeds of increasing or decreasing the frequency of the compressor

The speed of increasing or decreasing the frequency rapidly 1 ------1HZ/second
The speed of increasing or decreasing the frequency slowly 2 -----1HZ/10seconds

7.1.1.4 The calculation of the compressor's frequency

Refrigeration/dehumidification mode:

Pn=(Nh_c- S_c)*10 \geqslant 50 outdoor environment control Pn=(Nh_c- S_c)*10<50 PID control

Heating mode:

Pn=(S_c -Nh_c) *10 \geq 60 outdoor environment control Pn=(S c -Nh c) *10 \leq 60 PID control

(Nh c=indoor environment temperature S c=setting temperature)

1) The minimum/maximum frequency limitation

- A. While refrigerating: F-MAX-r is the maximum operation frequency of the compressor; F-MIN-r is the minimum operation frequency of the compressor.
- B. While heating: F-MAX-d is the maximum operation frequency of the compressor; F-MIN-d is the minimum operation frequency of the compressor.
- 2) The frequency limitation which is affected by the environment temperature. (Wh c= environment temperature)

Heating mode:

Serial No.	Temperature scope	Frequency limitation (09K/12K)	
1	Wh_c<-12	Max_hz1 99HZ/99 HZ	

2	Wh_c<-8	Max_hz2 99HZ/99 HZ
3	Wh_c<-2	Max_hz3 99HZ/95 HZ
4	Wh_c<5	Max_hz4 88HZ/87 HZ
5	Wh_c<10	Max_hz5 70HZ/83 HZ
6	Wh_c<17	Max_hz6 59HZ/64 HZ
7	Wh_c<20	Max_hz7 49HZ/60 HZ
8	Wh_c>=20	Max_hz8 42HZ/56 HZ

Remarks: The above are the maximum frequency limitations of the complete appliance which are affected by the environment, and they have nothing to do with the ability of the indoor unit.

Refrigeration/dehumidification mode:

Serial No.	Temperature scope	Frequency limitation (09K/12K)	
1	Wh_c<16	Max_hz1	31HZ/52 HZ
2	Wh_c<22	Max_hz2	37HZ/55 HZ
3	Wh_c<29	Max_hz3	47HZ/63 HZ
4	Wh_c<32	Max_hz4	54HZ/68 HZ
5	Wh_c<40	Max_hz5	62HZ/85 HZ
6	Wh_c<48	Max_hz6	64HZ/71 HZ
7	Wh_c>=48	Max_hz7	33HZ/47 HZ

Remarks: the above are not only the maximum frequency limitations of the complete appliance which are affected by the environment, but also the maximum ability limitation of the system. When the starting ability is not the maximum, its maximum frequency limitation is calculated by the following equations:

The frequency limitation which is affected by the temperature and under the condition of actual ability=the actual running system ability*the maximum frequency which is limited by the temperature and under the condition of maximum ability/the maximum designing ability of the system

Refrigeration/dehumidification mode:

The indoor setting	Low	Medium	Quiet
airflow speed	LOW	Mediairi	
The percentage of the			
rated frequency K	70%/70%	85%/85%	54%/42%
(09K/12K)			

Heating mode:

The indoor setting airflow speed	Low	Medium	Quiet
The percentage of the			
rated frequency K	80%/80%	90%/90%	51%/50%
(09K/12K)			

The calculation of the actual output frequency:

F= F-ED-*(rated frequency)×K

F-ED-*(rated frequency)= The frequency which is limited by the outdoor environment temperature Notes:

When refrigerating, it is needed to satisfy

F-MIN-d(compressor's Min hz)< F<F-MAX-d(compressor's Max hz)

When heating, it is needed to satisfy

F-MIN-r (compressor's Min_hz)< F<F-MAX-r (compressor's Max_hz)

PID control:

The innital frequency Sn is determined by Pn. We can calculate Hzoutf according to the value of Kp, Ki, Kd, Out_gain, Pn. Then, Fn = Sn + Hzoutf. The value of Fn is calculated in each sample time (60 seconds), and Fn is adujusted according to previous frequency of Sn and filtered output of Hzoutf.

7.1.2 The outdoor fan control (Exchange fan)

When the fan is changed among every airflow speed (including stop blowing), in order to avoid the airflow speed from skipping frequently, it must be kept under each mode for over 30 seconds, and then it can be changed to another mode (when refrigerating, the time is changed to 15 seconds).

7.1.2.1 The outdoor DC fan control

Within three minutes of compressor starting, the compressor is controlled according to the ambient temperature.

Tao (℃)	Tao <22℃	22 ℃< Tao <28℃	Tao≷29°C
Refrigeration/dehumidification (09K/12K)	2nd level /3 level	3rd level /5th level	5th level /7th level
Tao (°C)	Tao <<10℃	10℃< Tao <16℃	Tao≶16℃
Heating	7th level /7th level	5th level /5th level	3rd level /3rd level

After 3 minutes, the compressor is controlled according to the ambient temperature and the frequency of the compressor.

		<38 Hz (30 Hz)	38 Hz (30 Hz) -52 Hz	≥52 Hz (60 Hz)		
Refrigeration	on/dehumidification		(60 Hz)			
frequency	(Hz) 09K (12K)					
	≤22	2nd level	3rd level	5 th level		
T (*0)						
Tao (℃)	22-28	3rd level	5 th level	7 th level		
	≥28	7 th level				
Heatin	g frequency (Hz)	<51 Hz	51-70 Hz	≥70 Hz		
(09K/12K)					
	≤10	2nd level	3rd level	5 th level		
Tao (℃)						
iau (C)	10-17	3rd level	5 th level	7 th level		
	≥17	2nd level				

7.1.3 The control of the outdoor Electronic expansion valve (EEV)

In cooling mode, the EEV opening range is 120~480 steps. The EEV opening is 120 steps when unit is off.

In heating mode, the EEV opening range is 60~480 steps. The EEV opening is 60 steps when unit is off.

After outdoor unit is off, the EEV opening keep the current on for 5 s, then open the EEV completely for 2 minutes, then become 120 steps (cooling) or 60 steps (heating).

The EEV opening will increase if SH (superheat degree) >0 while decrease if SH<0.

Adjust frequency:

If |SH|=0, 60s/ 1 step

If $|SH| \ge 3$, and $\triangle SH = 0$, 10s/ 1 step.

If 3≥|SH|≥0, 30s/ 1 step.

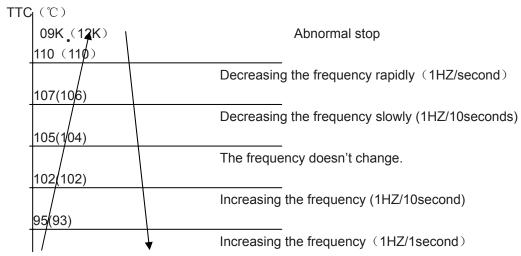
△SH= current SH- last SH

SH= Ts (suction temp)-Tc1 (indoor coil temp)-Tsh (fixed data, depend on different models, -1~2)

7.1.4 Four way control

For the details of defrosting four-way valve control, see the defrosting process.

Four way working in other ways:

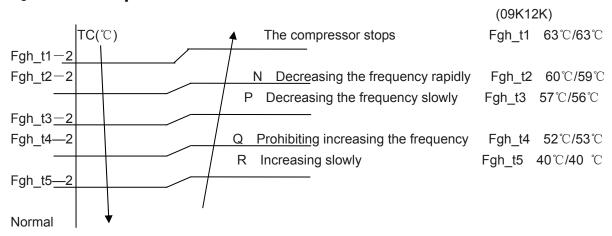

Under the mode of heating, open the four-way valve, when the compressor is not started or changed to non-heating mode, make sure the compressor is stoped for 2 minutes, and then close the four-way valve.

7.1.5 Protection function

7.1.5.1 TTC high temperature-preventing protection

Once the machine is started, it can run TTC(air-blowing temp) overheating protection of air-blowing, but air-blowing sensor malfunction must alarm after 4 minutes during which the compressor is started (during the course of self-detection, there's no such limitation)

Sensor detection methods: 100 times (one cycle of procedure run is one time, and about 5ms, detection method for each time: continuously sampling for 8 times, then order them and take the mean value of the middle 2 values), take the mean value.


TTC>=110 $^{\circ}$ lasts for 20 seconds. Overheating protection of air-blowing, alarm malfunction to the indoor, others don't last.

7.1.5.2 TC high temperature-preventing control of the indoor heating unit:

Tpg_indoor is the highest value of the effective indoor unit (start it and it is in accord with the running

state). TC=indoor coil temp.

The indoor heat exchanger sensor tests the temperature of the indoor heat exchanger. If the temperature is higher than $63\,^{\circ}\mathrm{C}$, decrease the rotate speed of the compressor and do the high temperature-preventing protection of the indoor heat exchanger; if the temperature of the indoor heat exchanger is lower than $45\,^{\circ}\mathrm{C}$, recover to the normal control.

- N: Decreasing at the speed of 1HZ/1 second
- P: Decreasing at the speed of 1Hz/10 seconds
- Q: Continue to keep the last-time instruction cycle
- R: Increasing at the speed of 1Hz/10seconds

Remarks: the outdoor unit

7.1.5.3 The control of preventing the over current of the compressor:

- During the starting process of the compressor, if the current of the compressor is greater than 12.5A for 3 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the power is off.
- During the starting process of the compressor, if the AC current is greater than 9A, the frequency of the compressor decreases at the speed of 1HZ/second.
- During the starting process of the compressor, if the AC current is greater than 8A, the frequency of the compressor decreases at the speed of 0.1HZ/second.
- During the starting process of the compressor, if the AC current is greater than 7.5A, the frequency of the compressor increases at the prohibited speed.
- During the starting process of the compressor, if the AC current is greater than 6.5A, the frequency of the compressor increases at the speed of no faster than 0.1HZ/second.

7.1.5.4 The protection function of AC current:

During the starting process of the compressor, if the AC current is greater than 12.5A for 3 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the the power is off.

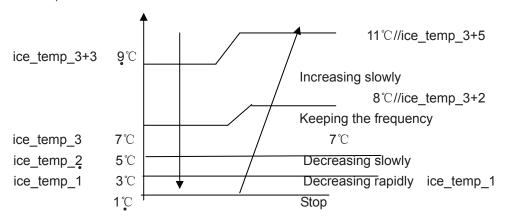
During the starting process of the compressor, if the AC current is greater than 9A, the frequency of the compressor decreases at the speed of 1HZ/second.

During the starting process of the compressor, if the AC current is greater than 8A, the frequency of the compressor decreases at the speed of 0.1HZ/second.

During the starting process of the compressor, if the AC current is greater than 7.5A, the frequency of

the compressor increases at the prohibited speed.

During the starting process of the compressor, if the AC current is greater than 6.5A, the frequency of the compressor increases at the speed of no faster than 0.1HZ/second.


Remarks: when the outdoor temperature is high, there's compensation for AC current protection.

- (1) When the outdoor environment temperature is higher than 40° C, AC current protection value decreases by 2A/1A(09K/12K).
- (2) When the outdoor environment temperature is higher than 50° C, AC current protection value decreases by 3A/2A(09K/12K).

7.1.5.5 Anti-freezing protection of the indoor heat exchanger

When refrigerating/heating, prevent freezing.

Tpg_indoor is the minimum value of the effective indoor unit (start it and it is in accord with the running state).

When Tpg_indoor \langle ice_temp_1, the frequency of the compressor decreases at the speed of 1HZ/1second.

When Tpg_indoor 〈 ice_temp_2, the frequency of the compressor decreases at the speed of 1HZ/10seconds.

When Tpg_indoor begins to rise again, and ice_temp_2≤Tpg_indoor≤ ice_temp_3, the frequency of the compressor doesn't change.

When ice_temp_3 $\langle Tpg_indoor \langle ice_temp_3+3^{\circ}C \rangle$, the frequency of the compressor increases at the speed of 1HZ/10seconds.

For example, Tpg_indoor \leq 0°C, last for 2 minutes, and then the outdoor unit will stop, and report underload malfunction, but don't send malfunction report to the indoor.

7.1.5.6 The frequency limitation of modification rate

In the field which is controlled by high frequency, if the modification rate is not high enough, the control-driven chip will enter into weak magnetic control, this will help to relieve the problem of modification rate. If during the course of weak magnetic control, the modification rate is still not high enough, enter into the control of decreasing frequency until the alarm of modification rate is relieved.

7.1.5.7 Temperature protection of the outdoor refrigerating coil

When the defrosting temperature and the sensor's temperature are higher than 68°C, the frequency of

the compressor decreases 1hz/10seconds. Keep the frequency until it decreases to the lowest frequency. When the temperatures are lower than 68° C and higher than 62° C, keep the frequency of the compressor. When the temperatures are lower than 62° C, relieve the defrosting temperature protection.

7.2 Value of Thermistor

Ambient Sensor, Defrosting Sensor, Pipe sensor

R25°C=10K $\Omega \pm 3\%$ B25°C/50°C=3700K $\pm 3\%$

T (%)		T	M: (ICO)	T . (%)	
Temp.(℃)	Max.(KΩ)	Normal(KΩ)	Min.(KΩ)	Tolerance(°C)	1
-30	165.2170	147.9497	132.3678	-1.94	1.75
-29	155.5754	139.5600	125.0806	-1.93	1.74
-28	146.5609	131.7022	118.2434	-1.91	1.73
-27	138.1285	124.3392	111.8256	-1.89	1.71
-26	130.2371	117.4366	105.7989	-1.87	1.70
-25	122.8484	110.9627	100.1367	-1.85	1.69
-24	115.9272	104.8882	94.8149	-1.83	1.67
-23	109.4410	99.1858	89.8106	-1.81	1.66
-22	103.3598	93.8305	85.1031	-1.80	1.64
-21	97.6556	88.7989	80.6728	-1.78	1.63
-20	92.3028	84.0695	76.5017	-1.76	1.62
-19	87.2775	79.6222	72.5729	-1.74	1.60
-18	82.5577	75.4384	68.8710	-1.72	1.59
-17	78.1230	71.5010	65.3815	-1.70	1.57
-16	73.9543	67.7939	62.0907	-1.68	1.55
-15	70.0342	64.3023	58.9863	-1.66	1.54
-14	66.3463	61.0123	56.0565	-1.64	1.52
-13	62.8755	57.9110	53.2905	-1.62	1.51
-12	59.6076	54.9866	50.6781	-1.60	1.49
-11	56.5296	52.2278	48.2099	-1.58	1.47
-10	53.6294	49.6244	45.8771	-1.56	1.46
-9	50.8956	47.1666	43.6714	-1.54	1.44
-8	48.3178	44.8454	41.5851	-1.51	1.42
-7	45.8860	42.6525	39.6112	-1.49	1.40
-6	43.5912	40.5800	37.7429	-1.47	1.39
-5	41.4249	38.6207	35.9739	-1.45	1.37
-4	39.3792	36.7676	34.2983	-1.43	1.35
-3	37.4465	35.0144	32.7108	-1.41	1.33
-2	35.6202	33.3552	31.2062	-1.38	1.31
-1	33.8936	31.7844	29.7796	-1.36	1.29
0	32.2608	30.2968	28.4267	-1.34	1.28
1	30.7162	28.8875	27.1431	-1.32	1.26
2	29.2545	27.5519	25.9250	-1.29	1.24
3	27.8708	26.2858	24.7686	-1.27	1.22
4	26.5605	25.0851	23.6704	-1.25	1.20
	1	I .	1	1	1

5	25.3193	23.9462	22.6273	-1.23	1.18
6	24.1432	22.8656	21.6361	-1.20	1.16
7	23.0284	21.8398	20.6939	-1.18	1.14
8	21.9714	20.8659	19.7982	-1.15	1.12
9	20.9688	19.9409	18.9463	-1.13	1.09
10	20.0176	19.0621	18.1358	-1.11	1.07
11	19.1149	18.2270	17.3646	-1.08	1.05
12	18.2580	17.4331	16.6305	-1.06	1.03
13	17.4442	16.6782	15.9315	-1.03	1.01
14	16.6711	15.9601	15.2657	-1.01	0.99
15	15.9366	15.2770	14.6315	-0.98	0.96
16	15.2385	14.6268	14.0271	-0.96	0.94
17	14.5748	14.0079	13.4510	-0.93	0.92
18	13.9436	13.4185	12.9017	-0.91	0.90
19	13.3431	12.8572	12.3778	-0.88	0.87
20	12.7718	12.3223	11.8780	-0.86	0.85
21	12.2280	11.8126	11.4011	-0.83	0.83
22	11.7102	11.3267	10.9459	-0.81	0.80
23	11.2172	10.8634	10.5114	-0.78	0.78
24	10.7475	10.4216	10.0964	-0.75	0.75
25	10.3000	10.0000	9.7000	-0.75	0.75
26	9.8975	9.5974	9.2980	-0.76	0.76
27	9.5129	9.2132	8.9148	-0.80	0.80
28	9.1454	8.8465	8.5496	-0.84	0.83
29	8.7942	8.4964	8.2013	-0.87	0.86
30	8.4583	8.1621	7.8691	-0.91	0.90
31	8.1371	7.8428	7.5522	-0.95	0.93
32	7.8299	7.5377	7.2498	-0.98	0.97
33	7.5359	7.2461	6.9611	-1.02	1.00
34	7.2546	6.9673	6.6854	-1.06	1.04
35	6.9852	6.7008	6.4222	-1.10	1.07
36	6.7273	6.4459	6.1707	-1.13	1.11
37	6.4803	6.2021	5.9304	-1.17	1.14
38	6.2437	5.9687	5.7007	-1.21	1.18
39	6.0170	5.7454	5.4812	-1.25	1.22
40	5.7997	5.5316	5.2712	-1.29	1.25
41	5.5914	5.3269	5.0704	-1.33	1.29
42	5.3916	5.1308	4.8783	-1.37	1.33
43	5.2001	4.9430	4.6944	-1.41	1.36
44	5.0163	4.7630	4.5185	-1.45	1.40
45	4.8400	4.5905	4.3500	-1.49	1.44
46	4.6708	4.4252	4.1887	-1.53	1.47
47		l	4 00 40	4 5 7	1.51
	4.5083	4.2666	4.0342	-1.57	1.31

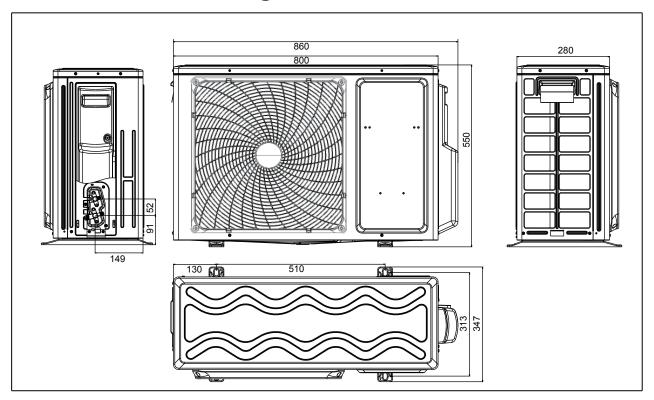
50 4 51 3	4.2026 4.0588	3.9686	3.7443	-1.65	1.59
51 :	4.0588	2 0207			
		3.8287	3.6084	-1.70	1.62
52	3.9206	3.6943	3.4780	-1.74	1.66
	3.7878	3.5654	3.3531	-1.78	1.70
53	3.6601	3.4416	3.2332	-1.82	1.74
54	3.5374	3.3227	3.1183	-1.87	1.78
55	3.4195	3.2085	3.0079	-1.91	1.82
56	3.3060	3.0989	2.9021	-1.95	1.85
57	3.1969	2.9935	2.8005	-2.00	1.89
58 :	3.0919	2.8922	2.7029	-2.04	1.93
59 2	2.9909	2.7948	2.6092	-2.08	1.97
60 2	2.8936	2.7012	2.5193	-2.13	2.01
61 2	2.8000	2.6112	2.4328	-2.17	2.05
62 2	2.7099	2.5246	2.3498	-2.22	2.09
63 2	2.6232	2.4413	2.2700	-2.26	2.13
64 2	2.5396	2.3611	2.1932	-2.31	2.17
65 2	2.4591	2.2840	2.1195	-2.36	2.21
66 2	2.3815	2.2098	2.0486	-2.40	2.25
67	2.3068	2.1383	1.9803	-2.45	2.29
68 2	2.2347	2.0695	1.9147	-2.49	2.34
69 2	2.1652	2.0032	1.8516	-2.54	2.38
70 2	2.0983	1.9393	1.7908	-2.59	2.42
71 2	2.0337	1.8778	1.7324	-2.63	2.46
72	1.9714	1.8186	1.6761	-2.68	2.50
73	1.9113	1.7614	1.6219	-2.73	2.54
74	1.8533	1.7064	1.5697	-2.78	2.58
75 ·	1.7974	1.6533	1.5194	-2.83	2.63
76 ·	1.7434	1.6021	1.4710	-2.88	2.67
77	1.6913	1.5528	1.4243	-2.92	2.71
78	1.6409	1.5051	1.3794	-2.97	2.75
79	1.5923	1.4592	1.3360	-3.02	2.80
80	1.5454	1.4149	1.2942	-3.07	2.84
81	1.5000	1.3721	1.2540	-3.12	2.88
82	1.4562	1.3308	1.2151	-3.17	2.93
83	1.4139	1.2910	1.1776	-3.22	2.97
84	1.3730	1.2525	1.1415	-3.27	3.01
85	1.3335	1.2153	1.1066	-3.32	3.06
86	1.2953	1.1794	1.0730	-3.38	3.10
87	1.2583	1.1448	1.0405	-3.43	3.15
88	1.2226	1.1113	1.0092	-3.48	3.19
<u> </u>	1.1880	1.0789	0.9789	-3.53	3.24
90	1.1546	1.0476	0.9497	-3.58	3.28
91	1.1223	1.0174	0.9215	-3.64	3.33
	1.0910	0.9882	0.8942	-3.69	3.37

93	1.0607	0.9599	0.8679	-3.74	3.42
94	1.0314	0.9326	0.8424	-3.80	3.46
95	1.0030	0.9061	0.8179	-3.85	3.51
96	0.9756	0.8806	0.7941	-3.90	3.55
97	0.9490	0.8558	0.7711	-3.96	3.60
98	0.9232	0.8319	0.7489	-4.01	3.64
99	0.8983	0.8088	0.7275	-4.07	3.69
100	0.8741	0.7863	0.7067	-4.12	3.74
101	0.8507	0.7646	0.6867	-4.18	3.78
102	0.8281	0.7436	0.6672	-4.23	3.83
103	0.8061	0.7233	0.6484	-4.29	3.88
104	0.7848	0.7036	0.6303	-4.34	3.92
105	0.7641	0.6845	0.6127	-4.40	3.97
106	0.7441	0.6661	0.5957	-4.46	4.02
107	0.7247	0.6482	0.5792	-4.51	4.07
108	0.7059	0.6308	0.5632	-4.57	4.12
109	0.6877	0.6140	0.5478	-4.63	4.16
110	0.6700	0.5977	0.5328	-4.69	4.21
111	0.6528	0.5820	0.5183	-4.74	4.26
112	0.6361	0.5667	0.5043	-4.80	4.31
113	0.6200	0.5518	0.4907	-4.86	4.36
114	0.6043	0.5374	0.4775	-4.92	4.41
115	0.5891	0.5235	0.4648	-4.98	4.45
116	0.5743	0.5100	0.4524	-5.04	4.50
117	0.5600	0.4968	0.4404	-5.10	4.55
118	0.5460	0.4841	0.4288	-5.16	4.60
119	0.5325	0.4717	0.4175	-5.22	4.65
120	0.5194	0.4597	0.4066	-5.28	4.70

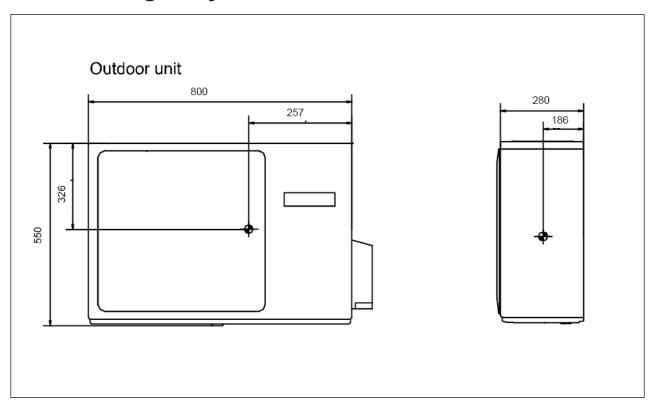
Discharging Sensor

R80°C=50K $\Omega \pm 3\%$ B25/80°C=4450K $\pm 3\%$

Temp.((℃))	Max.(KΩ)	Normal(KΩ)	Min.(KΩ)	Tolerance(°C)	
-30	14646.0505	12061.7438	9924.4999	-2.96	2.45
-29	13654.1707	11267.8730	9290.2526	-2.95	2.44
-28	12735.8378	10531.3695	8700.6388	-2.93	2.44
-27	11885.1336	9847.7240	8152.2338	-2.92	2.43
-26	11096.6531	9212.8101	7641.8972	-2.91	2.42
-25	10365.4565	8622.8491	7166.7474	-2.90	2.42
-24	9687.0270	8074.3787	6724.1389	-2.88	2.41
-23	9057.2314	7564.2244	6311.6413	-2.87	2.41
-22	8472.2852	7089.4741	5927.0206	-2.86	2.40


				FullClions	dia control
-21	7928.7217	6647.4547	5568.2222	-2.84	2.39
-20	7423.3626	6235.7109	5233.3554	-2.83	2.39
-19	6953.2930	5851.9864	4920.6791	-2.82	2.38
-18	6515.8375	5494.2064	4628.5894	-2.80	2.37
-17	6108.5393	5160.4621	4355.6078	-2.79	2.37
-16	5729.1413	4848.9963	4100.3708	-2.77	2.36
-15	5375.5683	4558.1906	3861.6201	-2.76	2.35
-14	5045.9114	4286.5535	3638.1938	-2.75	2.34
-13	4738.4141	4032.7098	3429.0191	-2.73	2.34
-12	4451.4586	3795.3910	3233.1039	-2.72	2.33
-11	4183.5548	3573.4260	3049.5312	-2.70	2.32
-10	3933.3289	3365.7336	2877.4527	-2.69	2.31
-9	3699.5139	3171.3148	2716.0828	-2.67	2.30
-8	3480.9407	2989.2460	2564.6945	-2.66	2.29
-7	3276.5302	2818.6731	2422.6139	-2.64	2.28
-6	3085.2854	2658.8058	2289.2164	-2.63	2.28
-5	2906.2851	2508.9126	2163.9230	-2.61	2.27
-4	2738.6777	2368.3158	2046.1961	-2.60	2.26
-3	2581.6752	2236.3876	1935.5371	-2.58	2.25
-2	2434.5487	2112.5459	1831.4826	-2.56	2.24
-1	2296.6230	1996.2509	1733.6024	-2.55	2.23
0	2167.2730	1887.0018	1641.4966	-2.53	2.22
1	2045.9191	1784.3336	1554.7931	-2.52	2.21
2	1932.0242	1687.8144	1473.1460	-2.50	2.20
3	1825.0899	1597.0431	1396.2333	-2.48	2.19
4	1724.6540	1511.6468	1323.7551	-2.47	2.17
5	1630.2870	1431.2787	1255.4324	-2.45	2.16
6	1541.5904	1355.6163	1191.0048	-2.43	2.15
7	1458.1938	1284.3593	1130.2298	-2.41	2.14
8	1379.7528	1217.2282	1072.8813	-2.40	2.13
9	1305.9472	1153.9626	1018.7481	-2.38	2.12
10	1236.4792	1094.3200	967.6334	-2.36	2.11
11	1171.0715	1038.0743	919.3533	-2.35	2.09
12	1109.4661	985.0146	873.7359	-2.33	2.08
13	1051.4226	934.9440	830.6210	-2.31	2.07
14	996.7169	887.6792	789.8583	-2.29	2.06
15	945.1404	843.0486	751.3077	-2.27	2.04
16	896.4981	800.8922	714.8380	-2.26	2.03
17	850.6086	761.0603	680.3265	-2.24	2.02
18	807.3024	723.4134	647.6580	-2.22	2.00
19	766.4212	687.8205	616.7252	-2.20	1.99
20	727.8172	654.1596	587.4271	-2.18	1.98
21	691.3524	622.3161	559.6694	-2.16	1.96
22	656.8979	592.1831	533.3634	-2.14	1.95

23 624 3328 583 6604 508 4261 -2.12 1 93 24 683 5446 586 5540 484.7796 -2.10 1.92 25 594 4275 511.0760 482.3510 -2.07 1.89 26 536 8865 486.9582 441.1516 -2.07 1.89 27 611.0105 466.0500 421.0258 -2.06 1.87 28 488.4191 442.399 401.9146 -2.03 1.88 29 463.1208 421.7883 383.7626 -2.01 1.84 30 441.0535 402.2430 396.5175 -1.99 1.83 31 420.1431 383.7151 380.1301 -1.97 1.81 32 400.2242 386.1295 334.8542 -1.96 1.80 33 381.5390 349.4941 319.7400 -1.93 1.78 34 363.776 335.8001 36.6645 -1.90 1.76 35 346.8176 318.6216 202.2709 </th <th></th> <th></th> <th></th> <th></th> <th>1 0110010110</th> <th></th>					1 0110010110	
25 564.4275 511.0760 462.3510 -2.09 1.80 26 536.9865 486.9352 441.1516 -2.07 1.89 27 511.0105 464.0500 421.0258 -2.05 1.87 28 486.4151 442.3499 401.1146 -2.03 1.86 29 463.1208 421.7883 383.7626 -2.01 1.84 30 441.0535 402.2430 366.1755 -1.99 1.83 31 420.1431 383.7151 380.1301 -1.97 1.81 32 400.342 366.1295 334.5542 -1.95 1.80 33 381.0350 349.4341 319.7460 -1.03 1.76 34 363.7176 333.5801 305.6645 -1.90 1.76 36 330.7839 304.2151 279.5286 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.84 1.71 37 315.5682 290.6199 267.4031	23	624.3328	563.6604	508.4261	-2.12	1.93
26 536,9865 486,9352 441,1516 -2.07 1.89 27 511,0105 464,0500 421,0288 -2.05 1.87 28 486,4151 442,3499 401,9146 -2.03 1.86 29 463,1208 421,7683 383,7666 -2.01 1.84 30 441,0335 402,2430 386,5175 -1.99 1.83 31 420,1431 383,7151 350,1301 -1.97 1.81 32 400,3242 366,1295 334,5542 -1.93 1.76 34 983,7176 333,5801 305,6645 -1.90 1.76 34 983,7176 333,5801 305,6645 -1.90 1.76 35 346,8170 318,5216 292,2709 -1.88 1.75 36 330,7839 304,2151 279,5266 -1.82 1.70 37 315,5692 290,6199 267,4031 -1.84 1.71 38 301,1254 277,6976 255,862	24	593.5446	536.6540	484.7796	-2.10	1.92
27 511,0105 484,0500 421,0258 -2.05 1.87 28 480,4151 442,3499 401,0146 2.03 1.88 29 463,1208 421,7683 383,7626 2.01 1.84 30 441,0535 402,2430 366,5175 1.199 1.83 31 420,1431 383,7151 350,1301 -1.97 1.81 32 400,3242 366,1299 334,5852 -1.95 1.80 33 381,5350 349,4341 319,7460 -1.93 1.76 34 363,7176 333,8601 306,6864 -1.90 1.76 35 348,8176 318,5216 292,2709 -1.88 1.75 36 330,7639 304,2151 279,5286 -1.86 1.73 37 315,5682 290,6199 267,4031 -1.84 1.71 38 301,1254 277,8976 265,8820 -1.82 1.70 39 287,4128 266,4119 244,8745<	25	564.4275	511.0760	462.3510	-2.09	1.90
28 486.4151 442.3499 401.9146 -2.03 1.88 29 483.1208 421.7683 333.7626 -2.01 1.84 30 441.0535 402.2430 366.5175 -1.99 1.83 31 420.1431 383.7151 350.1301 -1.97 1.81 32 400.3242 366.1295 334.5542 -1.95 1.80 33 381.5350 349.4341 319.7460 -1.90 1.76 34 363.7176 333.5601 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2799 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5862 290.6199 267.4031 -1.84 1.71 38 301.1264 277.6976 255.8620 -1.82 1.70 39 227.4128 265.4119 244.8745 -1.80 1.88 40 274.3905 253.7288 234.411	26	536.9865	486.9352	441.1516	-2.07	1.89
29 463.1208 421.7683 383.7626 -2.01 1.84 30 441.0535 402.2430 366.5175 -1.99 1.83 31 420.1431 383.7161 350.1301 -1.97 1.81 32 400.3242 366.1295 334.5542 -1.95 1.80 33 381.5350 349.4341 319.7460 -1.93 1.76 34 363.7176 333.5801 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2709 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1284 277.6976 255.8620 -1.82 1.70 39 227.4389 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.465 -1.76 1.64 42 259.2676 232.0436 214.9529	27	511.0105	464.0500	421.0258	-2.05	1.87
30 441.0535 402.2430 366.5175 -1.99 1.83 31 420.1431 383.7151 350.1301 -1.97 1.81 32 400.3242 366.1265 334.5542 -1.95 1.80 33 381.5350 349.4341 319.7460 -1.93 1.76 34 363.7176 333.5891 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2709 -1.86 1.75 36 330.7839 304.2151 276.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1264 277.8976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.88 40 274.3905 253.7288 234.4118 -1.76 1.66 41 262.0266 232.0436 214.9529 -1.74 1.63 42 259.2676 232.0436 214.952	28	486.4151	442.3499	401.9146	-2.03	1.86
31 420.1431 383.7161 350.1301 -1.97 1.81 32 400.3242 366.1295 334.5642 -1.95 1.80 33 381.5350 349.4341 319.7460 -1.93 1.78 34 363.7176 333.8011 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2709 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1254 277.6976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.68 40 274.3905 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9055	29	463.1208	421.7683	383.7626	-2.01	1.84
32 400.3242 366.1295 334.5422 -1.95 1.80 33 381.5350 349.4341 319.7460 -1.93 1.78 34 363.7176 333.8801 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2709 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1254 277.6976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.88 40 274.3905 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4999 212.4060 197.284	30	441.0535	402.2430	366.5175	-1.99	1.83
33 381,5350 349,4341 319,7460 -1,93 1,78 34 363,7176 333,5801 305,6645 -1,90 1,76 35 346,8176 318,5216 292,2709 -1,88 1,75 36 330,7839 304,2151 279,5286 -1,86 1,73 37 315,5682 290,6199 267,4031 -1,84 1,71 38 301,1254 277,6976 255,8620 -1,82 1,70 39 287,4128 265,4119 244,8745 -1,80 1,88 40 274,3905 253,7288 234,4118 -1,78 1,86 41 262,0206 242,6161 224,4465 -1,76 1,64 42 250,2676 232,0436 214,9629 -1,74 1,63 43 239,0983 221,9825 205,9065 -1,71 1,61 44 228,4809 212,4060 197,2844 -1,69 1,59 45 218,3860 203,2887 189,048	31	420.1431	383.7151	350.1301	-1.97	1.81
34 363.7176 333.5801 305.6645 -1.90 1.76 35 346.8176 318.5216 292.2709 -1.88 1.75 36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1254 277.6976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.68 40 274.3905 253.7288 234.4118 -1.76 1.64 41 282.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9625 205.9065 -1.71 1.61 44 228.4809 212.4080 197.2844 -1.69 1.59 45 213.3860 203.2887 189.0648 -1.67 1.67 46 208.7865 194.6066 181.227	32	400.3242	366.1295	334.5542	-1.95	1.80
35 346,8176 318,5216 292,2709 -1.88 1.75 36 330,7839 304,2151 279,5286 -1.86 1.73 37 315,5682 290,6199 267,4031 -1.84 1.71 38 301,1254 277,6976 255,8620 -1.82 1.70 39 287,4128 265,4119 244,8745 -1.80 1.68 40 274,3905 253,7288 234,4118 -1.78 1.66 41 262,0266 242,6161 224,4465 -1.76 1.64 42 250,2676 232,0436 214,9529 -1.74 1.63 43 239,0983 221,9825 205,9065 -1.71 1.61 44 228,4809 212,4060 197,2844 -1.69 1.59 45 218,3860 203,2887 189,0648 -1.67 1.57 46 208,7855 194,6066 181,2273 -1.65 1.54 47 199,6531 186,3369 173,752	33	381.5350	349.4341	319.7460	-1.93	1.78
36 330.7839 304.2151 279.5286 -1.86 1.73 37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1254 277.6976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.68 40 274.3905 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4809 212.4060 197.2844 -1.69 1.59 45 218.3860 203.2887 189.0648 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.217	34	363.7176	333.5801	305.6645	-1.90	1.76
37 315.5682 290.6199 267.4031 -1.84 1.71 38 301.1254 277.6976 255.8620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.68 40 274.3905 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4809 212.4060 197.2844 -1.69 1.59 45 218.3860 203.2887 189.0648 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4884 166.6217 -1.60 1.52 49 182.6945 170.9508 159.818	35	346.8176	318.5216	292.2709	-1.88	1.75
38 301.1254 277.6976 2558.620 -1.82 1.70 39 287.4128 265.4119 244.8745 -1.80 1.68 40 274.3905 253.7288 234.4118 -1.78 1.66 41 262.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9629 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4809 212.4060 197.2844 -1.69 1.59 45 218.3860 203.2887 189.0468 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 61 109.2784 103.7961 98.5000 -1.20 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.20 1.17	36	330.7839	304.2151	279.5286	-1.86	1.73
39 287,4128 265,4119 244,8745 -1.80 1.68 40 274,3905 253,7288 234,4118 -1.78 1.66 41 262,0206 242,6161 224,4465 -1.76 1.64 42 250,2676 232,0436 214,9529 -1.74 1.63 43 239,0983 221,9825 205,9065 -1.71 1.61 44 228,4809 212,4060 197,2844 -1.69 1.59 45 216,3860 203,2887 189,0648 -1.67 1.57 46 208,7855 194,6066 181,2273 -1.65 1.55 47 199,6531 186,3369 173,7524 -1.63 1.54 48 190,9639 178,4584 166,6217 -1.60 1.52 49 182,6945 170,9508 159,8181 -1.56 1.48 51 167,3280 156,9733 147,1268 -1.53 1.46 52 160,1904 150,4683 141,290	37	315.5682	290.6199	267.4031	-1.84	1.71
40 274,3905 253,7288 234,4118 -1.78 1.66 41 262,0206 242,6161 224,4465 -1.76 1.64 42 250,2676 232,0436 214,9529 -1.74 1.63 43 239,0983 221,9825 205,9065 -1.71 1.61 44 228,809 212,4060 197,2844 -1.69 1.59 45 218,3860 203,2887 189,0648 -1.67 1.67 46 208,7855 194,6066 181,2273 -1.65 1.55 47 199,6531 186,3369 173,7524 -1.63 1.54 48 190,9639 178,4584 166,6217 -1.60 1.52 49 182,6945 170,9508 159,8181 -1.58 1.50 50 174,8228 163,7951 153,3249 -1.56 1.48 51 167,3280 156,9733 147,1268 -1.53 1.46 52 160,1904 150,4683 141,2090	38	301.1254	277.6976	255.8620	-1.82	1.70
41 262.0206 242.6161 224.4465 -1.76 1.64 42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4809 212.4060 197.2844 -1.69 1.59 45 218.3860 203.2887 189.0648 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.557	39	287.4128	265.4119	244.8745	-1.80	1.68
42 250.2676 232.0436 214.9529 -1.74 1.63 43 239.0983 221.9825 205.9065 -1.71 1.61 44 228.4809 212.4060 197.2844 -1.69 1.59 45 218.3860 203.2887 189.0648 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.159	40	274.3905	253.7288	234.4118	-1.78	1.66
43 239,0983 221,9825 205,9065 -1.71 1.61 44 228,4809 212,4060 197,2844 -1.69 1.59 45 218,3860 203,2887 189,0648 -1.67 1.57 46 208,7855 194,6066 181,2273 -1.65 1.55 47 199,6531 186,3369 173,7524 -1.63 1.54 48 190,9639 178,4584 166,6217 -1.60 1.52 49 182,6945 170,9508 159,8181 -1.58 1.50 50 174,8228 163,7951 153,3249 -1.56 1.48 51 167,3280 156,9733 147,1268 -1.53 1.46 52 160,1904 150,4683 141,2090 -1.51 1.44 53 153,3914 144,2641 135,5577 -1.49 1.42 54 146,9136 138,3454 130,1598 -1.47 1.40 55 140,7403 132,6980 125,002	41	262.0206	242.6161	224.4465	-1.76	1.64
44 228,4809 212,4060 197,2844 -1.69 1.59 45 218,3860 203,2887 189,0648 -1.67 1.57 46 208,7855 194,6066 181,2273 -1.65 1.55 47 199,6531 186,3369 173,7524 -1.63 1.54 48 190,9639 178,4584 166,6217 -1.60 1.52 49 182,6945 170,9508 159,8181 -1.58 1.50 50 174,8228 163,7951 153,3249 -1.56 1.48 51 167,3280 156,9733 147,1268 -1.53 1.46 52 160,1904 150,4683 141,2090 -1.51 1.44 53 153,3914 144,2641 135,5577 -1.49 1.42 54 146,9136 138,3454 130,1598 -1.47 1.40 55 140,7403 132,6980 125,0027 -1.44 1.38 56 134,8559 127,3081 120,074	42	250.2676	232.0436	214.9529	-1.74	1.63
45 218.3860 203.2887 189.0648 -1.67 1.57 46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.364	43	239.0983	221.9825	205.9065	-1.71	1.61
46 208.7855 194.6066 181.2273 -1.65 1.55 47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.861	44	228.4809	212.4060	197.2844	-1.69	1.59
47 199.6531 186.3369 173.7524 -1.63 1.54 48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5889 106.5564 -1.35 1.30 60 113.9241 108.0776 <td< td=""><td>45</td><td>218.3860</td><td>203.2887</td><td>189.0648</td><td>-1.67</td><td>1.57</td></td<>	45	218.3860	203.2887	189.0648	-1.67	1.57
48 190.9639 178.4584 166.6217 -1.60 1.52 49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 <td< td=""><td>46</td><td>208.7855</td><td>194.6066</td><td>181.2273</td><td>-1.65</td><td>1.55</td></td<>	46	208.7855	194.6066	181.2273	-1.65	1.55
49 182.6945 170.9508 159.8181 -1.58 1.50 50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 9	47	199.6531	186.3369	173.7524	-1.63	1.54
50 174.8228 163.7951 153.3249 -1.56 1.48 51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.	48	190.9639	178.4584	166.6217	-1.60	1.52
51 167.3280 156.9733 147.1268 -1.53 1.46 52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.673	49	182.6945	170.9508	159.8181	-1.58	1.50
52 160.1904 150.4683 141.2090 -1.51 1.44 53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.20 1.17	50	174.8228	163.7951	153.3249	-1.56	1.48
53 153.3914 144.2641 135.5577 -1.49 1.42 54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690	51	167.3280	156.9733	147.1268	-1.53	1.46
54 146.9136 138.3454 130.1598 -1.47 1.40 55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	52	160.1904	150.4683	141.2090	-1.51	1.44
55 140.7403 132.6980 125.0027 -1.44 1.38 56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	53	153.3914	144.2641	135.5577	-1.49	1.42
56 134.8559 127.3081 120.0746 -1.42 1.36 57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	54	146.9136	138.3454	130.1598	-1.47	1.40
57 129.2457 122.1630 115.3645 -1.40 1.34 58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	55	140.7403	132.6980	125.0027	-1.44	1.38
58 123.8956 117.2504 110.8618 -1.37 1.32 59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	56	134.8559	127.3081	120.0746	-1.42	1.36
59 118.7926 112.5589 106.5564 -1.35 1.30 60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	57	129.2457	122.1630	115.3645	-1.40	1.34
60 113.9241 108.0776 102.4388 -1.32 1.28 61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	58	123.8956	117.2504	110.8618	-1.37	1.32
61 109.2784 103.7961 98.5000 -1.30 1.26 62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	59	118.7926	112.5589	106.5564	-1.35	1.30
62 104.8443 99.7046 94.7315 -1.28 1.23 63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	60	113.9241	108.0776	102.4388	-1.32	1.28
63 100.6112 95.7939 91.1253 -1.25 1.21 64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	61	109.2784	103.7961	98.5000	-1.30	1.26
64 96.5692 92.0553 87.6735 -1.23 1.19 65 92.7088 88.4805 84.3690 -1.20 1.17	62	104.8443	99.7046	94.7315	-1.28	1.23
65 92.7088 88.4805 84.3690 -1.20 1.17	63	100.6112	95.7939	91.1253	-1.25	1.21
	64	96.5692	92.0553	87.6735	-1.23	1.19
66 89.0211 85.0614 81.2048 -1.18 1.15	65	92.7088	88.4805	84.3690	-1.20	1.17
	66	89.0211	85.0614	81.2048	-1.18	1.15


1					
67	85.4976	81.7908	78.1744	-1.15	1.12
68	82.1303	78.6615	75.2715	-1.13	1.10
69	78.9116	75.6668	72.4902	-1.10	1.08
70	75.8343	72.8004	69.8249	-1.08	1.06
71	72.8916	70.0561	67.2703	-1.05	1.03
72	70.0770	67.4283	64.8213	-1.03	1.01
73	67.3844	64.9115	62.4731	-1.00	0.99
74	64.8080	62.5006	60.2211	-0.98	0.96
75	62.3423	60.1906	58.0609	-0.95	0.94
76	59.9821	57.9770	55.9885	-0.92	0.92
77	57.7223	55.8552	53.9998	-0.90	0.89
78	55.5583	53.8210	52.0912	-0.87	0.87
79	53.4856	51.8706	50.2591	-0.85	0.84
80	51.5000	50.0000	48.5000	-0.85	0.84
81	49.7063	48.2057	46.7083	-0.85	0.85
82	47.9835	46.4842	44.9911	-0.89	0.89
83	46.3286	44.8323	43.3452	-0.93	0.92
84	44.7385	43.2468	41.7672	-0.96	0.95
85	43.2105	41.7248	40.2540	-1.00	0.99
86	41.7386	40.2604	38.7996	-1.03	1.02
87	40.3241	38.8545	37.4048	-1.07	1.06
88	38.9643	37.5045	36.0668	-1.11	1.09
89	37.6569	36.2078	34.7831	-1.14	1.13
90	36.3996	34.9622	33.5513	-1.18	1.16
91	35.1903	33.7653	32.3689	-1.22	1.19
92	34.0269	32.6151	31.2338	-1.26	1.23
93	32.9075	31.5096	30.1438	-1.30	1.27
94	31.8302	30.4467	29.0970	-1.33	1.30
95	30.7933	29.4246	28.0915	-1.37	1.34
96	29.7950	28.4417	27.1254	-1.41	1.37
97	28.8337	27.4961	26.1970	-1.45	1.41
98	27.9078	26.5864	25.3048	-1.49	1.44
99	27.0160	25.7110	24.4470	-1.53	1.48
100	26.1569	24.8685	23.6222	-1.57	1.52
101	25.3290	24.0574	22.8291	-1.61	1.55
102	24.5311	23.2765	22.0662	-1.65	1.59
103	23.7620	22.5245	21.3323	-1.69	1.63
104	23.0205	21.8002	20.6261	-1.73	1.66
105	22.3055	21.1025	19.9465	-1.77	1.70
106	21.6159	20.4303	19.2924	-1.81	1.74
107	20.9508	19.7825	18.6626	-1.85	1.77
108	20.3091	19.1582	18.0563	-1.89	1.81
109	19.6899	18.5564	17.4723	-1.93	1.85
110	19.0924	17.9761	16.9098	-1.98	1.89

					dila contact
111	18.5157	17.4166	16.3680	-2.02	1.93
112	17.9590	16.8769	15.8458	-2.06	1.96
113	17.4214	16.3564	15.3427	-2.10	2.00
114	16.9023	15.8542	14.8577	-2.15	2.04
115	16.4010	15.3696	14.3902	-2.19	2.08
116	15.9167	14.9020	13.9394	-2.23	2.12
117	15.4489	14.4506	13.5047	-2.27	2.16
118	14.9968	14.0149	13.0855	-2.32	2.19
119	14.5599	13.5942	12.6811	-2.36	2.23
120	14.1376	13.1879	12.2909	-2.41	2.27
121	13.7294	12.7955	11.9144	-2.45	2.31
122	13.3347	12.4165	11.5510	-2.50	2.35
123	12.9531	12.0503	11.2003	-2.54	2.39
124	12.5840	11.6965	10.8617	-2.58	2.43
125	12.2270	11.3545	10.5348	-2.63	2.47
126	11.8817	11.0240	10.2191	-2.68	2.51
127	11.5475	10.7046	9.9142	-2.72	2.55
128	11.2242	10.3957	9.6197	-2.77	2.59
129	10.9112	10.0970	9.3352	-2.81	2.63
130	10.6084	9.8082	9.0602	-2.86	2.67
131	10.3151	9.5288	8.7945	-2.91	2.71
132	10.0312	9.2586	8.5378	-2.95	2.75
133	9.7563	8.9971	8.2895	-3.00	2.80
134	9.4901	8.7441	8.0495	-3.05	2.84
135	9.2322	8.4993	7.8175	-3.09	2.88
136	8.9824	8.2623	7.5931	-3.14	2.92
137	8.7404	8.0329	7.3760	-3.19	2.96
138	8.5059	7.8108	7.1660	-3.24	3.00
139	8.2787	7.5958	6.9629	-3.29	3.04
140	8.0584	7.3875	6.7664	-3.33	3.09

8. Dimensional drawings

9.Center of gravity

10. Service Diagnosis

10.1 Caution for Diagnosis

The operation lamp flashes when any of the following errors is detected.

- 1. When a protection device of the indoor or outdoor unit is activated or when the thermistor malfunctions, disabling equipment operation.
- 2. When a signal transmission error occurs between the indoor and outdoor units. In either case, conduct the diagnostic procedure described in the following pages.

10.2 Problem Symptoms and Measures

Symptom	Check Item	Details of Measure		
None of the units operates	Check the power supply.	Check to make sure that the rated voltage is supplied.		
	Check the indoor PCB	Check to make sure that the indoor PCB is broken		
Operation sometimes stops.	Check the power supply.	A power failure of 2 to 10 cycles can stop air conditioner operation.		
Equipment operates but does not cool, or does not heat (only for heat pump)	Check for faulty operation of the electronic expansion valve.	Set the units to cooling operation, and compare the temperatures of the liquid side connection pipes of the connection section among rooms to check the opening and closing operation of the electronic expansion valves of the individual units.		
	Diagnosis by service port pressure and operating current.	Check for insufficient gas.		
Large operating noise and vibrations	Check the installation condition.	Check to make sure that the required spaces for installation (specified in the Technical Guide, etc.) are provided.		

10.3 Error Codes and Description indoor display

	Code indication				
	Other display	Only For 498 and 498A display (Red/Green Time Run □0n ★Flash ■0ff,)	Outdoor (LED1 flash times)	fault description	Reference Page
Indoor and Outdoor	E7	■ ■ ★	15	Communication fault between indoor and outdoor units	Page .42
Indoor Malfunction	E1	★ ■ ■		Room temperature sensor failure	Page 31.
	E2	★ □ □		Heat-exchange sensor failure	Page 31.
	E4	★ □ ★		Indoor EEPROM error	Page 32.
	E14	■ □ ★		Indoor fan motor malfunction	Page 33
	F12	■ ★ ■	1	Outdoor EEPROM error	Page .32
Outdoor Malfunction	F1	\square * *	2	The protection of IPM	Page .36
	F22	* * ■	3	Overcurrent protection of AC electricity for the outdoor model	Page .37
	F3	■ ★ 	4	Communication fault between the IPM and outdoor PCB	Page.39
	F19	■ ★ □	6	Power voltage is too high or low	Page .40
	F4	■ ★ ■	8	Overheat protection for Discharge temperature	Page .41
	F21	□□★	10	Defrost temperature sensor failure	Page 31.
	F7	■ ★ ■	11	Suction temperature sensor failure	Page .3
	F6	□ ★ ■	12	Ambient temperature sensor failure	Page .3
	F25	★ □ ■	13	Discharge temperature sensor failure	Page .3
	F11	■ ★ ■	18	deviate from the normal for the compressor	Page .44
	F28	■ ★ ■	19	Loop of the station detect error	Page .44
	F2	■ ★ □	24	Overcurrent of the compressor	Page .37
	F23	■ ★ □	25	Overcurrent protection for single-phase of the compressor	Page .43

10.3.1 Thermistor or Related Abnormality

Indoor Display E1: Room temperature sensor failure

E2: Heat-exchange sensor failure

Outdoor display LED1 flash 10 times: Defrost temperature sensor failure

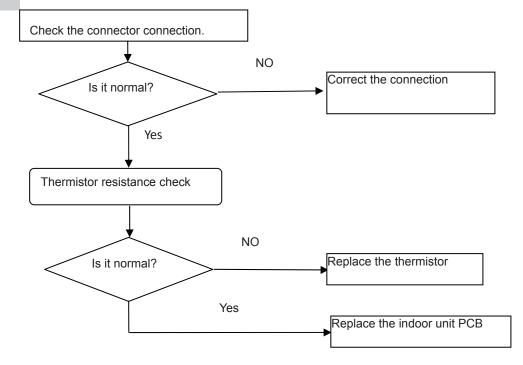
LED1 flash 11 times: Suction temperature sensor failure LED1 flash 12 times: Ambient temperature sensor failure

LED1 flash 13 times: Discharge temperature sensor failure

Method of Malfunction Detection The temperatures detected by the thermistors are used to determine thermistor errors

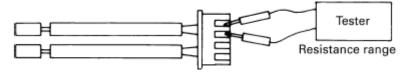
Malfunction Decision Conditions When the thermistor input is more than 4.92V or less than 0.08V during compressor operation.

Note: The values vary slightly in some models


Supposed Causes

- Faulty connector connection
- Faulty thermistor
- Faulty PCB

Troubleshooting


* Caution Be sure to turn off power switch before connect or disconnect connector, else parts damage may be occurred.

r, or

Thermistor resistance check method:

Remove the connector of the thermistor on the PCB, and measure the resistance of thermistor using tester. The relationship between normal temperature and resistance is shown in the value of indoor thermistor.

10.3.2 EEPROM abnormal

Indoor Display E4: Indoor EEPROM error

Indoor display F12: Outdoor EEPROM error; Outdoor LED1 flash 1 times

Method of Malfunction Detection The Data detected by the EEPROM are used to determine MCU

Malfunction Decision Conditions When the data of EEPROM is error or the EEPROM is damaged

Supposed

Causes

Faulty EEPROM data

■ Faulty EEPROM

■ Faulty PCB

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

Replace the indoor or outdoor mainboard.

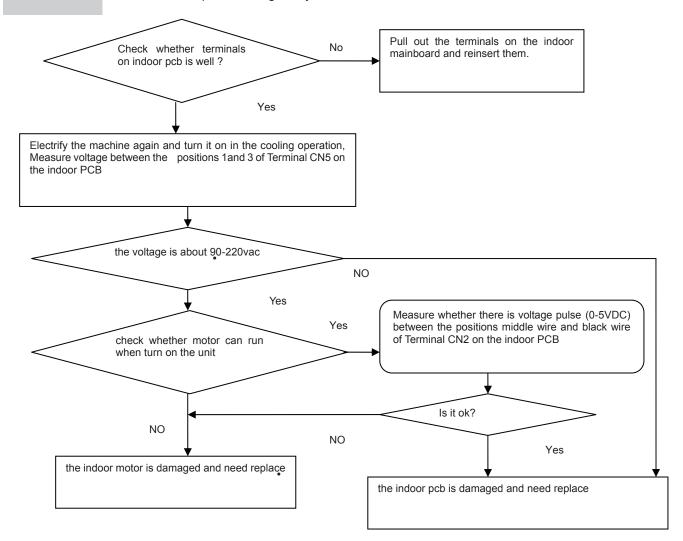
10.3.3 Indoor AC fan motor malfunction

Indoor Display E14

Method of Malfunction Detection

The rotation speed detected by the Hall IC during fan motor operation is used to determine abnormal fan motor operation

Malfunction Decision Conditions


when the detected rotation feedback signal don't received in 2 minutes

Supposed Causes

- Operation halt due to breaking of wire inside the fan motor.
- Fan motor overheat protection
- Operation halt due to breaking of the fan motor lead wires
- Detection error due to faulty indoor unit PCB

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

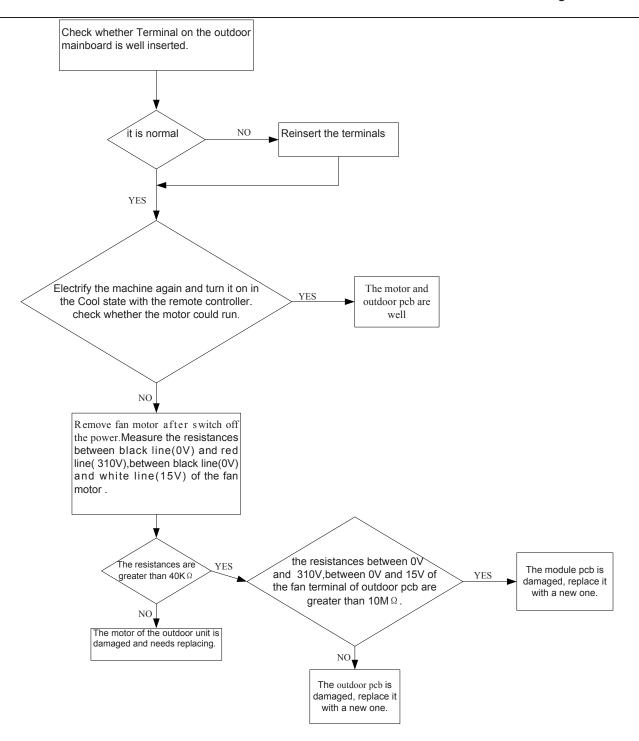
10.3.4 Outdoor DC fan motor fault

Outdoor display

LED1 flash 9 times

Method of

Malfunction Detection DC fan motor is detected by checking the fan running condition and so on


Malfunction Decision Conditions when the data of EEPROM is error or the EEPROM is damaged

Supposed Causes

- DC fan motor protection dues to the DC fan motor faulty
- DC fan motor protection dues to faulty PCB

Troubleshooting

^{*} Caution Be sure to turn off power switch before connect or disconnect connector, parts damage may be occurred.

10.3.5 IPM protection

Outdoor display:

LED1 flash 2 times

Method of Malfunction Detection IPM protection is detected by checking the compressor running condition and so on

Malfunction Decision Conditions

- The system leads to IPM protection due to over current
- The compressor faulty leads to IPM protection
- circuit component of IPM is broken and led to IPM protection

Supposed Causes

- IPM protection dues to the compressor faulty
- IPM protection dues to faulty PCB of IPM module
- Compressor wiring disconnected

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, else parts damage may be occurred.

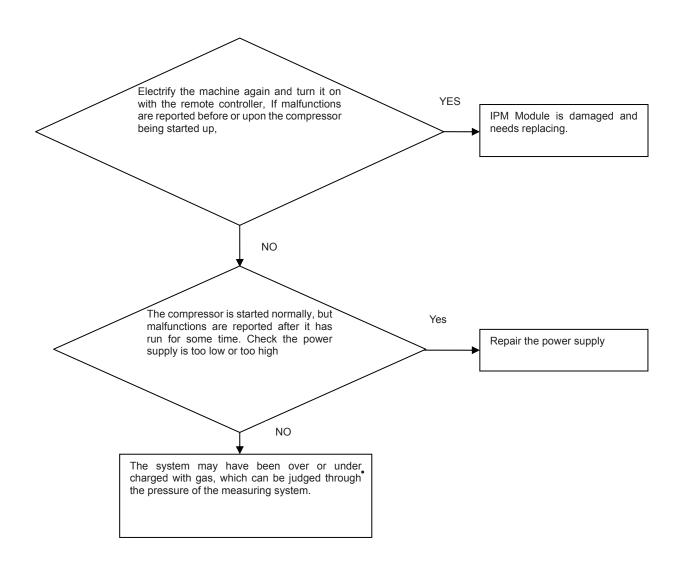
Electrify the machine again and turn it on with Test IPM module resistance between P and U,V,W. YES the remote controller, If malfunctions are reported Then test IPM module resistance between N and U,V,W. before or upon the compressor being started up. The resistances range are between $1M\Omega$ with $10M\Omega$ and they are similar. YES NO NO IPM Module is damaged and needs replacing. The compressor is started normally, but malfunctions are reported after it has run for some time. 1. The system may have been over(like,capillary clogging or electronic expansion valve faulty) or under charged with gas, which can be judged through the pressure of the measuring system. 2. The shaft of compressor is seized and the compressor needs replacing.

10.3.6 Over-current of the compressor

Outdoor Display:

LED1 flash 3 or 24 or 25 times

Method of Malfunction Detection The current of the compressor is too high


Malfunction Decision Conditions when the IPM Module is damaged or the compressor is damaged. power supply voltage is too low or too high

Supposed Causes

- Faulty IPM Module
- Faulty compressor
- Faulty power supply

Troubleshooting

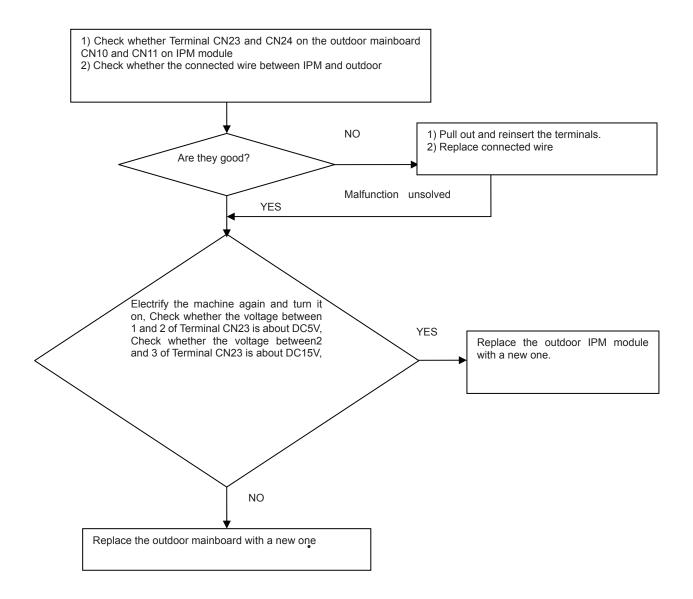
* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

10.3.7 The communication fault between IPM and outdoor PCB

Outdoor display: LED1 flash 4 times

Method of Malfunction Detection Communication is detected by checking the IPM module and the outdoor PCB

Malfunction Decision Conditions


- The outdoor PCB broken leads to communication fault
- The IPM module broken leads to communication fault

Supposed Causes

- The outdoor PCB is broken
- The IPM module is broken
- Communication wiring disconnected

Troubleshooting

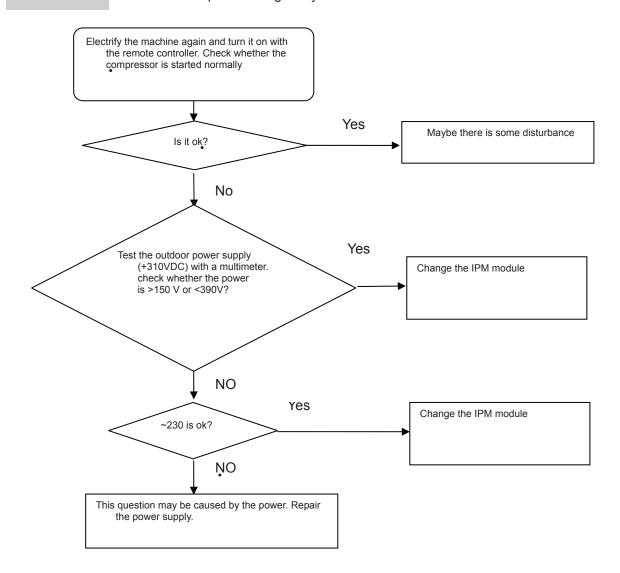
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.8 Power Supply Over or under voltage fault

Outdoor display:

LED1 flash 6 times The power supply is over voltage

Method of Malfunction Detection An abnormal voltage rise or fall is detected by checking the specified voltage detection circuit.


Malfunction Decision Conditions An voltage signal is fed from the voltage detection circuit to the microcomputer

Supposed Causes

- Supply voltage not as specified
- the IPM module is broken
- the outdoor PCB is broken

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.9 Overheat Protection For Discharge Temperature

Outdoor display: LED1 flash 8 times

Method of Malfunction Detection The Discharge temperature control is checked with the temperature being detected by the Discharge pipe thermistor

Malfunction Decision Conditions when the compressor discharge temperature is above 110°C

Supposed Causes

- Electronic expansion valve defective
- Faulty thermistor
- Faulty PCB

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, else parts damage may be occurred.

Electrify the machine again and turn it on with the remote controller, then measure the temperature at the exhaust temperature sensor of the compressor on the outdoor unit 1) The cryogen may have been leaked during installation, or there may be leakage in the piping YES system. The temperature exceeds 2) There may be other causes to make the exhaust shortly after the temperature too high. machine starts up? Malfunctions occur after running for some time even though the measured temperature is below 110°C. Pull out the exhaust sensor and measure its resistance at standard temperatures according resistance-temperature table YES The sensor is damaged. Replace the sensor The results deviate with a new one. much? NO

The outdoor mainboard is damaged and needs be replaced

10.3.10 The communication fault between indoor and outdoor

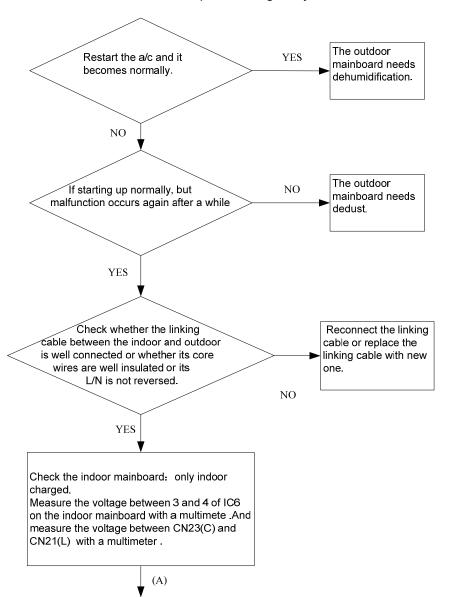
Indoor display outdoor display

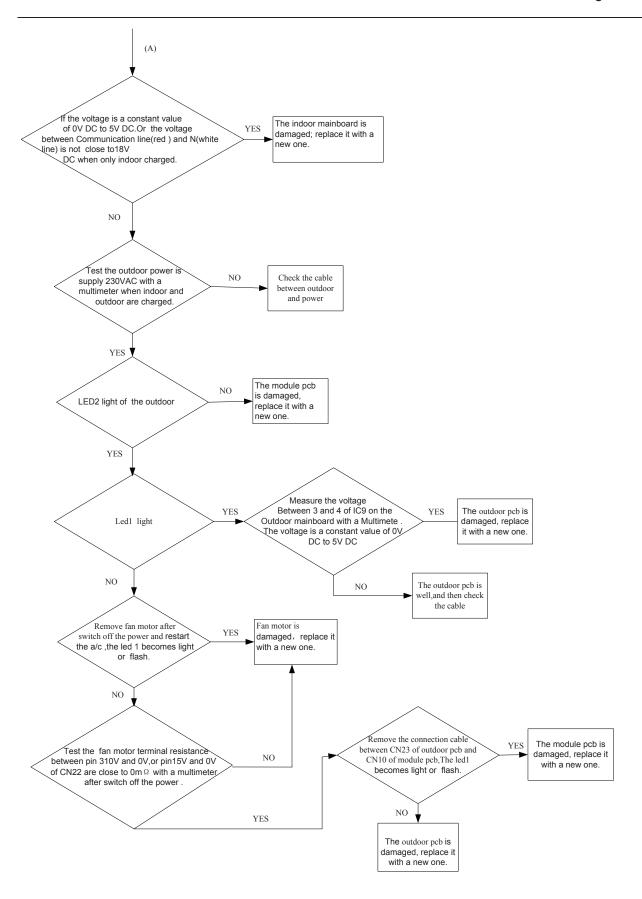
E7

LED1 flash 15 times

Method of Malfunction Detection Communication is detected by checking the indoor PCB and the outdoor PCB.

Malfunction Decision Conditions


- The outdoor PCB broken leads to communication fault.
- The indoor PCB broken leads to communication fault.


Supposed Causes

- Communication wiring disconnected.
- The indoor PCB is broken.
- The outdoor PCB is broken.
- The Module PCB is broken.

Troubleshooting

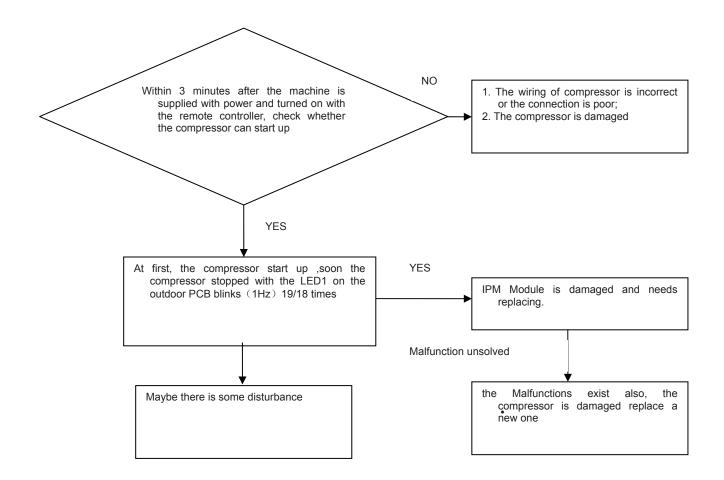
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.11 Loss of synchronism detection Inverter side current detection is abnormal

Outdoor Display

LED1 flash 18 times LED1 flash 19 times

Method of Malfunction Detection The position of the compressor rotor can not detected normally


Malfunction Decision Conditions when the wiring of compressor is wrong or the connection is poor; or the compressor is damaged

Supposed Causes

- Faulty The wiring of compressor
- Faulty compressor
- Faulty PCB

Troubleshooting

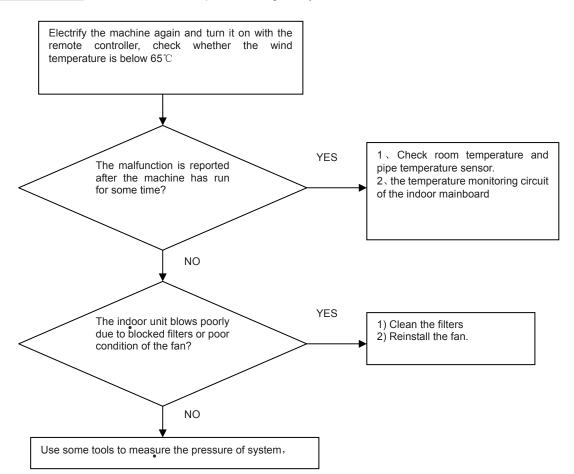
* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

10.3.12 High work-intense protection

Outdoor display

LED1 flash 21 times

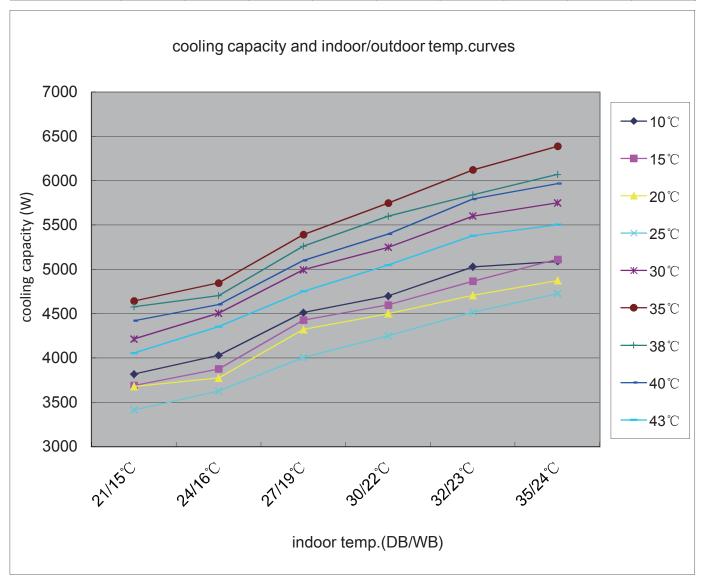
Method of Malfunction Detection High work-intense control is activated in the heating mode if the temperature being sensed by the heat exchanger thermistor exceeds the limit.


Malfunction Decision Conditions Activated when the temperature being sensed by the heat exchanger rises above 65° twices in 30 minutes.

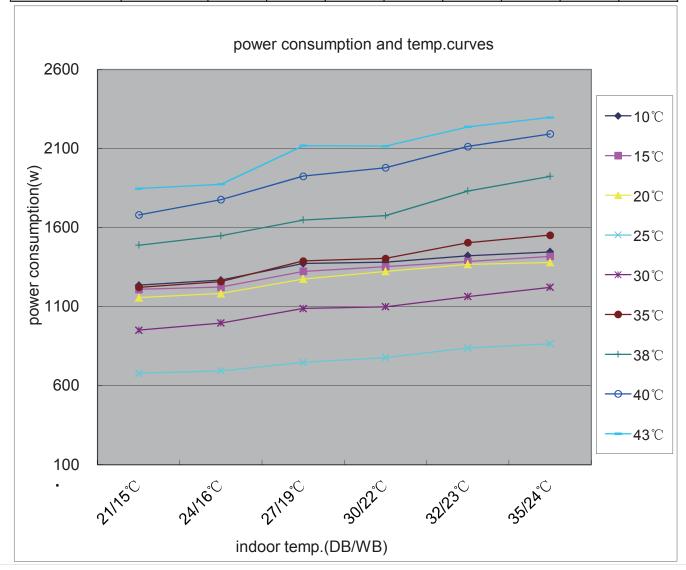
Supposed Causes

- Faulty electronic expansion valve
- Dirty heat exchanger
- Faulty heat-exchange sensor
- Insufficient gas

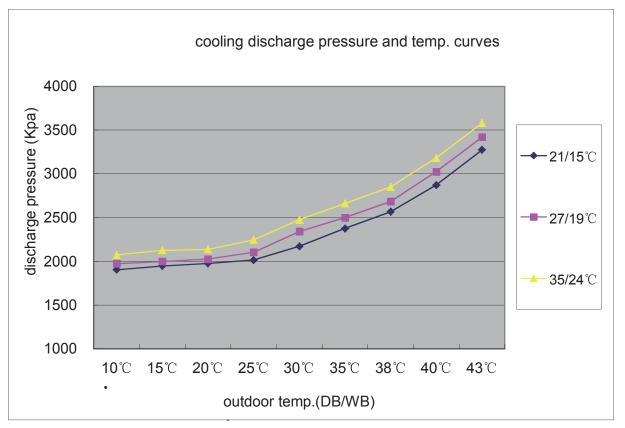
Troubleshooting


* Caution Be sure to turn off power switch before connect or disconnect connector, else parts damage may be occurred.

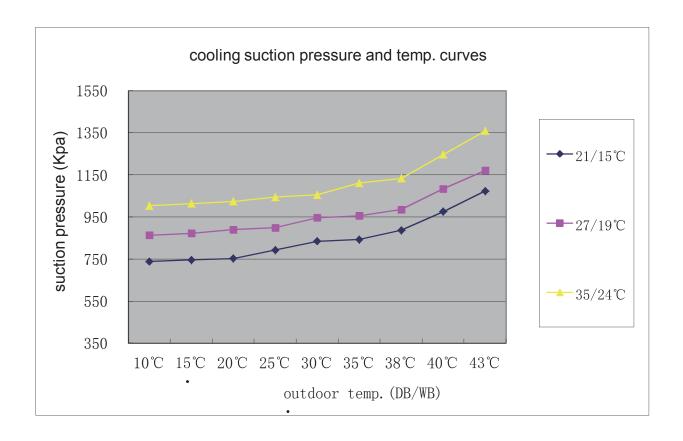
11.Performance and curves diagrams


11.1 Cooling capacity-temperature curves

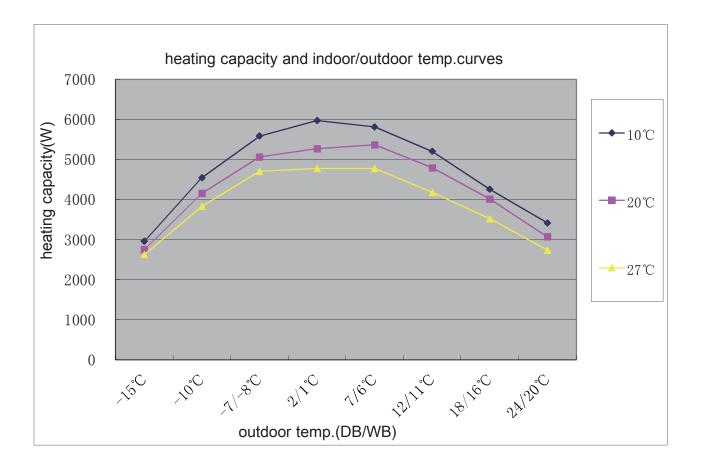
	cooling value-temerature table								
indoor temp.		outdoor temp.							
DB/WB	10℃	15℃	20℃	25℃	30℃	35℃	38℃	40℃	43℃
21/15 ℃	3818	3691	3681	3415	4214	4645	4579	4421	4057
24/16 ℃	4031	3877	3776	3629	4506	4847	4705	4605	4356
27/19 ℃	4513	4429	4323	4007	4995	5393	5263	5102	4752
30/22℃	4700	4600	4500	4250	5250	5750	5600	5400	5050
32/23 ℃	5030	4867	4707	4518	5602	6123	5842	5794	5382
35/24 ℃	5090	5115	4875	4728	5751	6391	6071	5969	5504


11.2 Cooling power consumption value- temperature curves

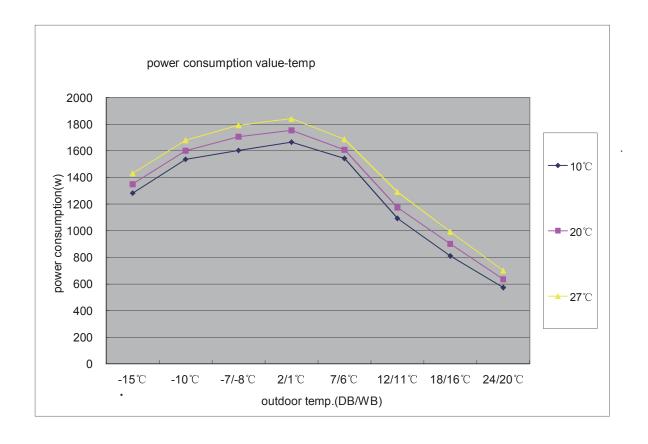
	power consumption value-temp.table								
indoor temp.				outd	loor temp.				
DB/WB	10℃	15℃	20℃	25 ℃	30℃	35℃	38℃	40℃	43 ℃
21/15 ℃	1235	1210	1157	679	952	1222	1489	1680	1848
24/16 ℃	1268	1224	1184	694	997	1259	1548	1777	1874
27/19 ℃	1373	1324	1275	747	1089	1389	1648	1926	2119
30/22℃	1382	1353	1324	779	1100	1405	1676	1979	2116
32/23 ℃	1423	1386	1368	839	1164	1506	1832	2114	2238
35/24℃	1447	1419	1380	865	1223	1553	1925	2193	2297


11.3 Cooling discharge pressure curves

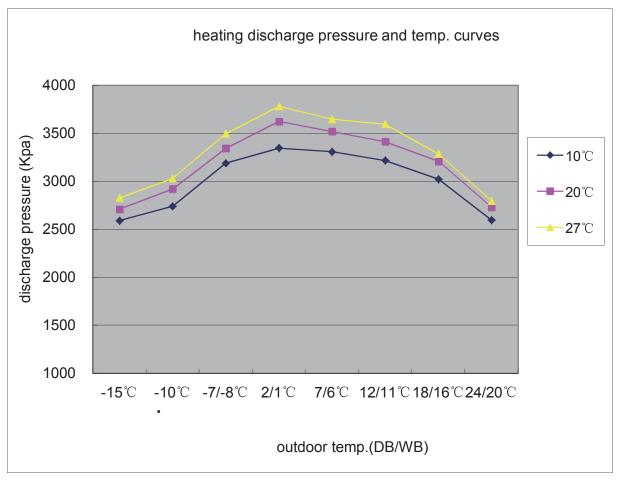
	cooling discharge pressure.table						
outdoor temp. (humidity 46%)	indoor temp.						
DB/WB	21/15℃	27/19℃	35/24 ℃				
10℃	1903	1973	2073				
15℃	1948	1999	2126				
20℃	1975	2025	2137				
25℃	2014	2104	2245				
30℃	2171	2341	2474				
35℃	2375	2499	2662				
38℃	2567	2683	2850				
40℃	2871	3025	3182				
43℃	3273	3419	3580				


11.4 Cooling suction pressure curves

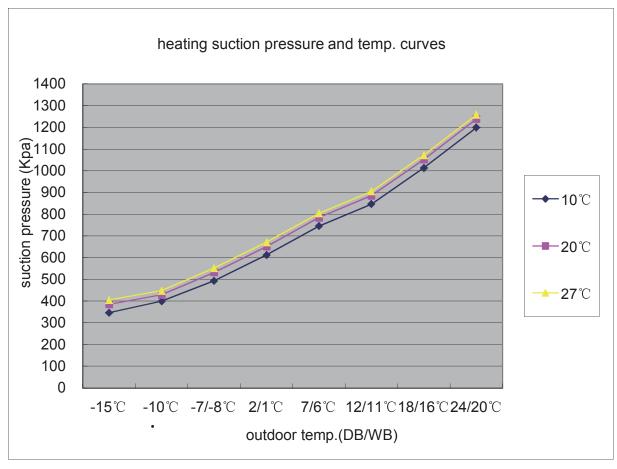
cooling suction pressure.table					
outdoor temp. (humidity 46%)	indoor temp.				
DB/WB	2 1/15℃	27/19℃	35/24 ℃		
10℃	738	864	1004		
15℃	746	873	1014		
20℃	753	891	1024		
25℃	793	900	1045		
30℃	835	947	1056		
35℃	843	956	1111		
38℃	887	986	1134		
40℃	976	1085	1247		
43℃	1074	1171	1360		


11.5 Heating capacity-temperature curves

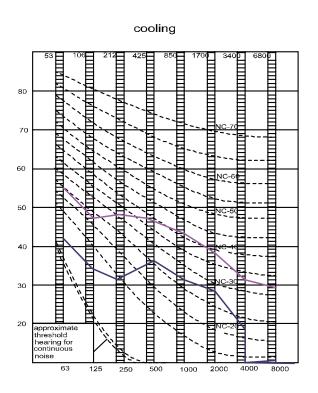
	heating capacity and indoor/outdoor temp.table						
outdoor temp.		indoor temp.(humidity 46%)					
DB/WB	10℃	20℃	27 ℃				
-15℃	2958	2756	2629				
-10℃	4546	4156	3834				
-7/-8℃	5586	5065	4707				
2/1℃	5972	5270	4779				
7/6℃	5812	5368	4776				
12/11℃	5203	4793	4179				
18/16℃	4257	4014	3519				
24/20℃	3415	3069	2737				

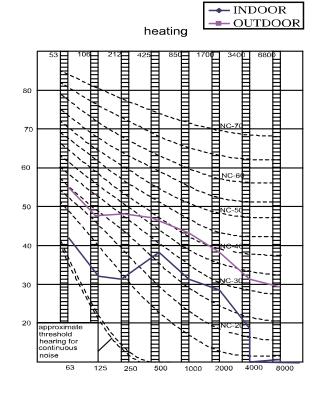

11.6 Heating power consumption value- temperature curves

	power cons	sumption value-temp.table	
outdoor temp.		indoor temp.(humidity 46%)	
DB/WB	10℃	20℃	27℃
-15℃	1283	1351	1432
-10℃	1536	1600	1680
-7/-8℃	1604	1707	1792
2/1℃	1666	1754	1841
7/6°C	1543	1608	1688
12/11 ℃	1092	1174	1292
18/16℃	811	902	992
24/20°C	573	636	700

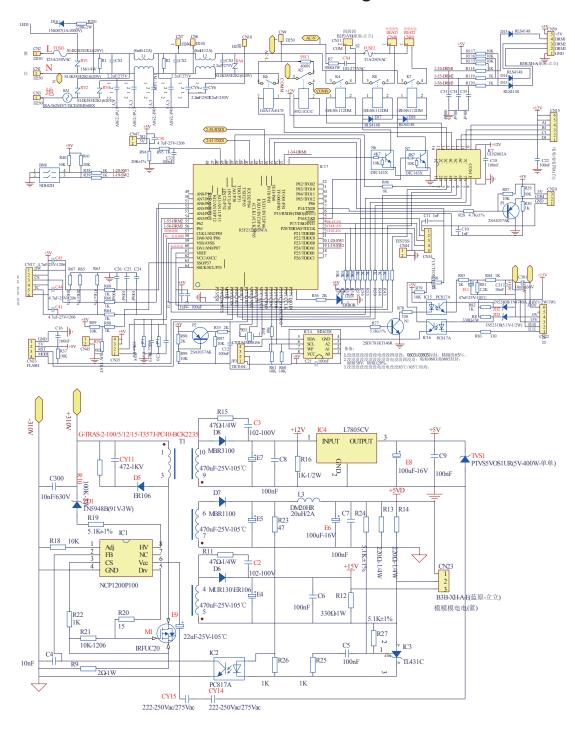

11.7 Heating discharge pressure curves

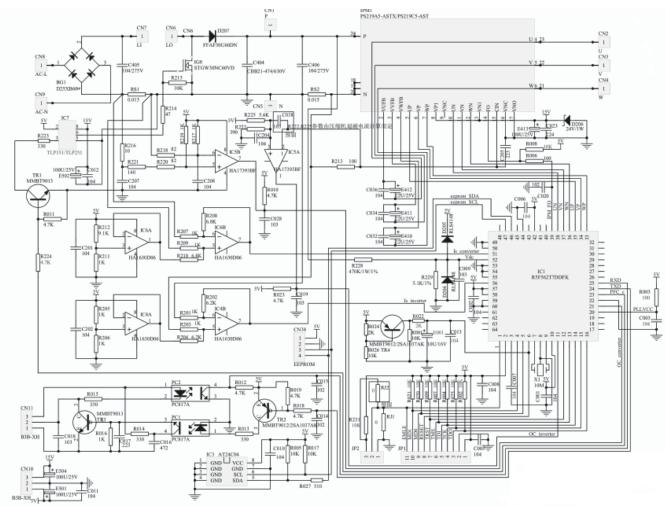
heating discharge pressure.table						
outdoor temp	indoor temp.					
DB/WB	10℃	20℃	27℃			
-15℃	2591	2710	2828			
-10℃	2741	2922	3031			
-7/-8℃	3189	3344	3497			
2/1℃	3348	3626	3783			
7/6℃	3309	3520	3647			
12/11℃	3218	3414	3597			
18/16℃	3022	3210	3287			
24/20℃	2595	2728	2795			


11.8 Heating suction pressure curves


	hoating sucti	on proseuro tablo		
outdoor temp indoor temp.				
DB/WB	10℃	20℃	27℃	
-15℃	347	386	406	
-10℃	400	429	449	
-7/-8℃	494	533	553	
2/1℃	613	652	672	
7/6℃	746	785	805	
12/11℃	847	886	906	
18/16℃	1014	1053	1073	
24/20 ℃	1200	1239	1259	

12.Sound level


	Sound pres	sure level						
Madal	230V,50HZ						Sound power level	
Model	Cooling/heating			Measuring location microphone	location	of	(cooling/heating)	
	Н	L	SL	- microphone				
JZ050-C1	65			1r	0,8m		53	



13 Wiring Diagrams

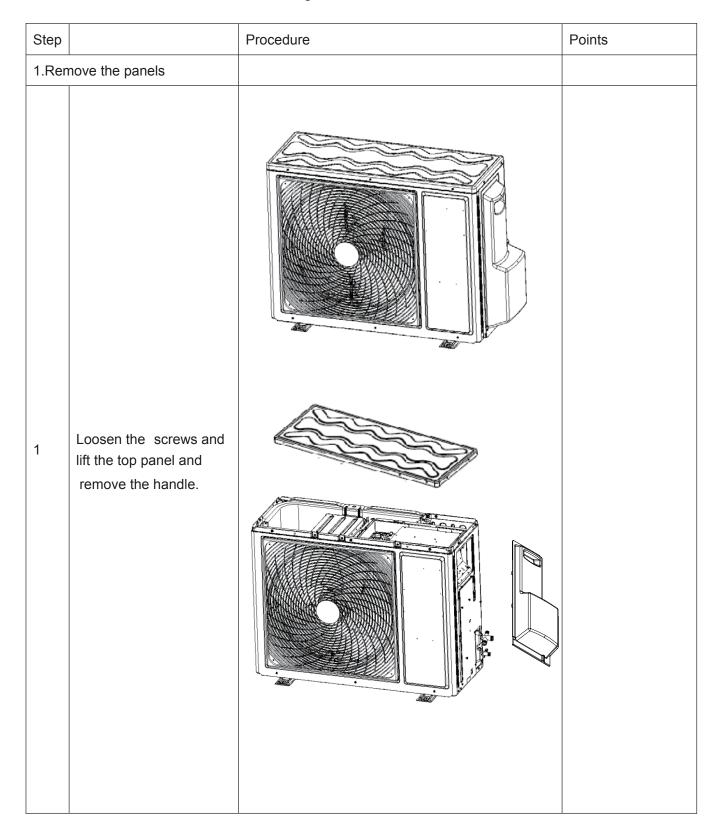
13.1 Outdoor unit control board circuit diagrams

13.2Module board circuit diagram

Sincere Forever

HEIKO REMOVAL PROCEDURE

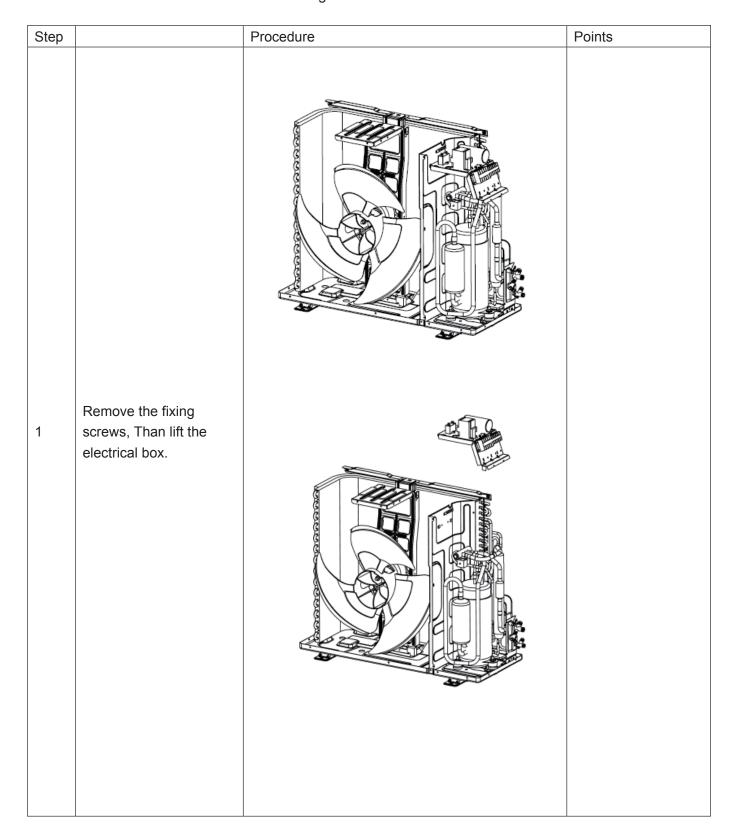
Wall Mounted Type DC Inverter FREE MATCH NEW1.5P-Series SERIES:JZ050-C1



1.Removal of Outdoor panel

Procedure

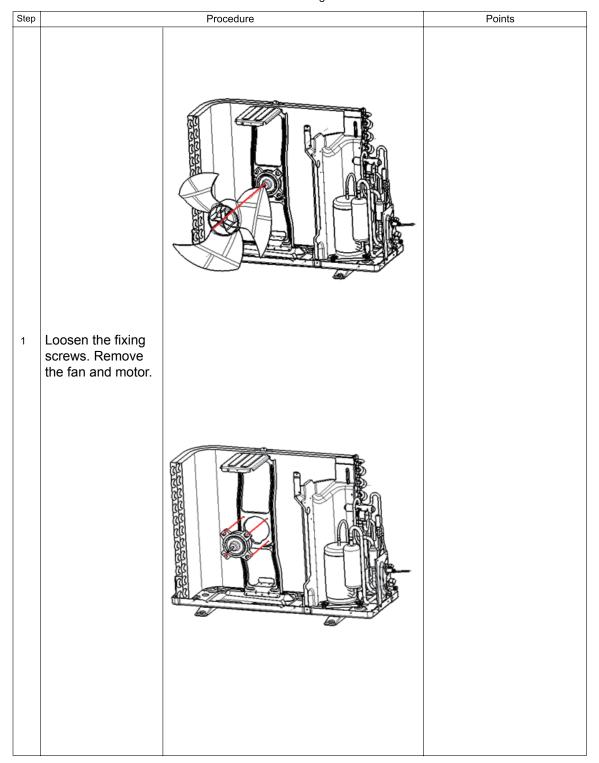
Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work


			Removal of procedure
Step		Procedure	Points
2	Loosen the screws of the panel, pull and remove the front panel.		

2.Removal of Electrical Box

Procedure

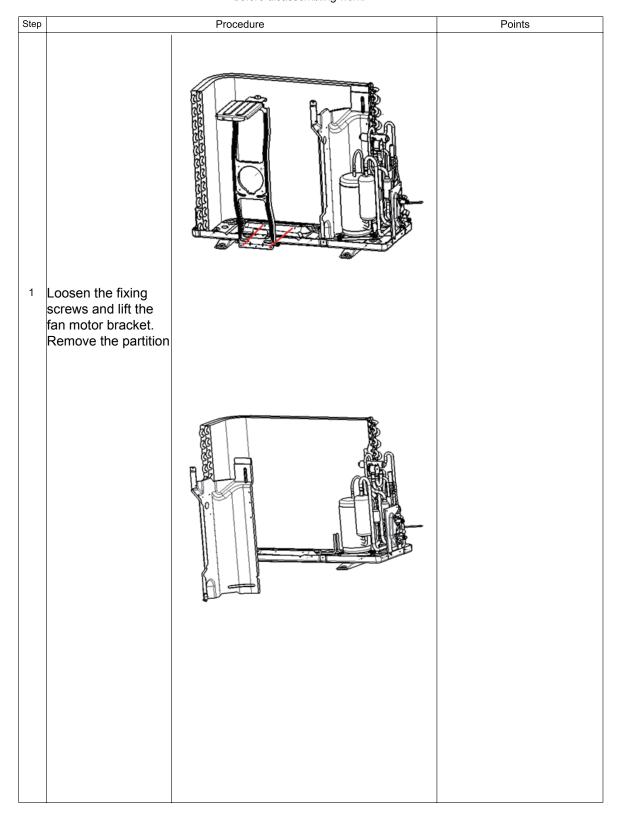
Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work



3. Removal of Fan and Fan Motor

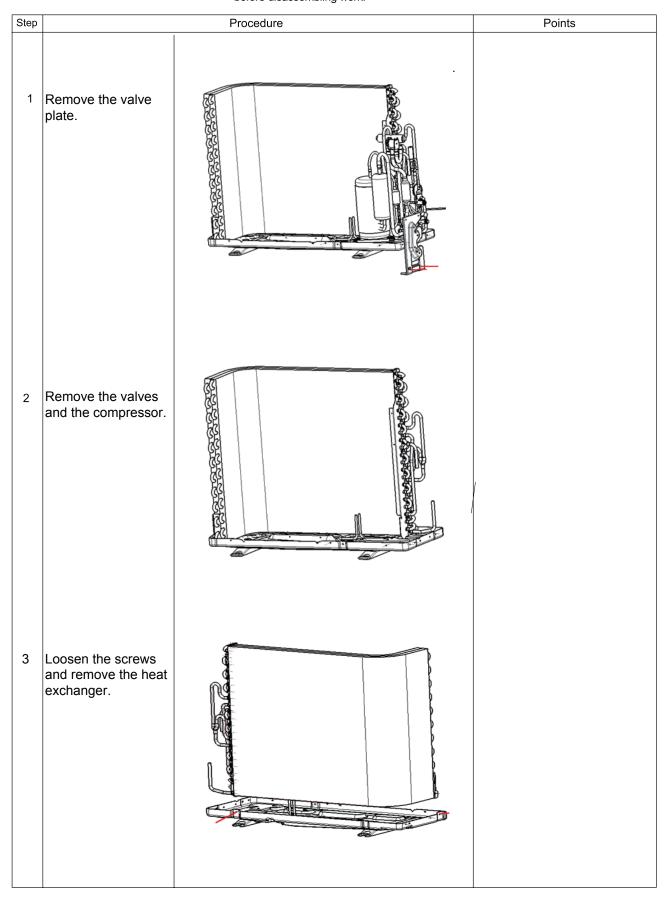
Procedure

Warning


Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

4. Removal of Fan Motor Bracket and Partition

Procedure


Marning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

5.Removal of Compressor and Heat Exchanger

Procedure

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

